Seite - 152 - in Differential Geometrical Theory of Statistics
Bild der Seite - 152 -
Text der Seite - 152 -
Entropy2016,18, 433
(2) : [δτ f](ξ)= q+1
∑
1 (−1)i[ai · f(∂iξ)− f(ai ·∂iξ)+(f(∂2i,q+1ξ⊗ai)) ·aq+1] ∀f ∈Cqτ(A,W).
Thepair
(C∗τ(A,W),δτ)
isacochaincomplex,viz
δ2τ=0.
Thederivedcohomologyspace isdenotedby
Hτ(A,W)=∑
q Hqτ(A,W).
It is calledtheW-valuedtotalKVcohomologyofA.
3.2. TheTheoryofKVCohomology—Version: theSemi-SimplicialObjects
LetVbeatwo-sidedmoduleofaKValgebraA.Ouraimis theconstructionofsemisimplicial
A-moduleswhosederivedcochaincomplex isquasi isomorphic to theKVcochincomplexCKV(A,V).
3.2.1. Extension
Westartbyconsideringthevectorspace
B=A⊕R.
Itselementsaredenotedby (s+λ).WeendowBwiththemultiplicationwhich isdefinedby
(s+λ) ·(s∗+λ∗)= s ·s∗+λs∗+λ∗s+λλ∗.
With themultiplicationwe justdefined,B isa realKValgebra. Inotherwordswehave
KV(X1,X2,X3)=0.
Here
Xj= sj+λj.
In theA-moduleVwehaveastructureof leftB-modulewhich isdefinedby
(s+λ)·v= s·v+λv ∀(s+λ)∈B, ∀v∈V.
3.2.2.Construction
Let B˜ be the vector space spanned byA×R. Its elements are finite linear combinations of
(s,λ),s∈A×R.
Thetensoralgebraof B˜ isdenotedbyT(B˜). IthasaZ-grading. itshomogeneousvectorsub-spaces
aredefinedby
Tq(B˜)= B˜⊗q.
Amonomialelement isdenotedby
ξ= x1⊗x2⊗ ...⊗xq.
Here
xj=(sj,λj)∈A×R.
152
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik