Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 315 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 315 - in Differential Geometrical Theory of Statistics

Bild der Seite - 315 -

Bild der Seite - 315 - in Differential Geometrical Theory of Statistics

Text der Seite - 315 -

Entropy2017,19, 7 3. EscortDistributionsandGeneralizationsofExpectations Inanomalousstatistics, ageneralizedexpectation, calledanescortexpectation, isoftendiscussed since the standard expectation does not exist in general (cf. [2,5,6]). In this section, we recall generalizationsofexpectationsandintroduceasequential structureofescortdistributions. LetSqbeaq-exponential family. Foragiven p(x;θ)∈Sqwedefinetheq-escortdistributionPq(x;θ) of p(x;θ)andthenormalizedq-escortdistributionPescq (x;θ)by Pq(x;θ) := Pq,(1)(x;θ) := {p(x;θ)}q, Pescq (x;θ) := 1 Zq(p) {p(x;θ)}q, where Zq(p)= ∫ Ω {p(x;θ)}qdx, respectively. For a q-exponential familySq = {pq(x;θ)}, the set ofnormalizedescortdistributions Sq′={Pescq (x;θ)} isaq′-exponential familywithq′=(2q−1)/q. Example 2. Let tν(x;μ,σ) be a univariate Student’s t-distribution with degree of freedom ν. Then its normalized escort distribution is also a univariate Student’s t-distribution with degree of freedom ν+2. In fact, fromEquation (4), adirect calculationshows that q′= 2q−1 q = ν+5 ν+3 . This implies that thedegree of freedomν′= ν+2. Therefore,weobtaina sequenceof escortdistributions froma givenStudent’s t-distribution tν: tν→ tν+2→ tν+4→··· . This sequence is called a τ-sequence, and the procedure to obtain from a given t-distribution to another t-distribution throughanescortdistribution is called theτ-transformation [16]. Foragiven pq(x;θ)∈Sq,wecandefinetheescortofanescortdistribution P˜q(x;θ) :=Pq,(2)(x;θ) := q{Pq(x;θ)}q ′ = q{pq(x;θ)}2q−1. We call P˜q(x;θ) the second escort distributionof pq(x;θ). The coefficient qbefore {pq(x;θ)}2q−1 comes from considerations ofU-information geometry [17]. Wewill discuss in the latter part of Section5. Similarly, we can define the n-th escort distribution Pq,(n)(x;θ) from the sequence of escortdistributions: Pq,(n)(x;θ) :={q(2q−1) · · ·((n−1)q−(n−2))}{pq(x;θ)}nq−(n−1). (5) Let f(x)beafunctiononΩ. Theq-expectationEq,p[f(x)]andthenormalizedq-expectationEescq,p[f(x)] withrespect to p(x;θ)∈Sq aredefinedby Eq,p[f(x)] := ∫ Ω f(x)Pq(x;θ)dx, Eescq,p[f(x)] := ∫ Ω f(x)Pescq (x;θ)dx, respectively.Wedenoteby E˜q,p[f(x)] theexpectationwithrespect to thesecondescortdistribution P˜q(x;θ), that is, E˜q,p[f(x)] := ∫ Ω f(x)P˜q(x;θ)dx = q ∫ Ω f(x){pq(x;θ)}2q−1dx. 315
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics