Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 452 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 452 - in Differential Geometrical Theory of Statistics

Bild der Seite - 452 -

Bild der Seite - 452 - in Differential Geometrical Theory of Statistics

Text der Seite - 452 -

Entropy2016,18, 110 To construct inductively Am+1 andBm+1, given Am andBm, one takes Am+1 to consist of the elements in the list Lm+1={y∈ f(X) : ν−1Y (y)≤Nm+1, ∃x∈X, withy= f(x)andn(x)=m+1}. Hereone invokes theoracle,whichensures that, if suchxexists, then itmustbecontainedina finite listofpointsx∈Xwithboundedcomplexity KTU(xm)≤ c ·ν−1Y (y)m log(ν−1Y (y)m). One then takesBm+1 toconsistof theremainingelements in the listLm+1.Werefer thereader to [16] foramoredetailedformulation. Moregenerally, theargumentof [16] recalledaboveshowsthat, forarecursive function f :Z+→ Q,determiningwhichvalueshave infinitemultiplicities is computablegivenanoracle thatenumerate integers inorderofKolmogorovcomplexity. Asdiscussedin[16,24], theasymptoticboundcanalsobeseenas thephase transitioncurvefor aquantumstatisticalmechanical systemconstructedoutof thespaceof codes,where thepartition functionof thesystemweightscodesaccordingto theirKolmogorovcomplexity. This isasclose toa “statisticaldescription”of theasymptoticboundthatonecanachieve. In comparisonwith thebehaviorof randomcodes (codeswhosecomplexity is comparable to their size),whichconcentrate in theregionboundedbytheGilbert–Varshamovline,whenordering codesbycomplexity,non-randomcodesof lowercomplexitypopulate theregionabove,withcode pointsaccumulating in the intermediate regionboundedbytheasymptoticbound. That intermediate regionthus, inasense, reflects thedifferencebetweenShannonentropyandcomplexity. 3.5. EntropyandComplexityEstimates forLanguageFamilies Onthebasisof theconsiderationsof theprevioussectionsandof theresultsof [16,24] recalled above,weproposeawaytoassignaquantitativeestimateofentropyandcomplexity toagivensetof natural languages. Asbefore letC= {L1, . . . ,Lk}be abinary (or ternary) codewhere the codewords Li are the binary (ternary) strings of syntactic parameters of a set of languages Li. Wedefine the entropyof the languagefamily{L1, . . . ,Lk}as theq-aryShannonentropyHq(δ(C)),whereq iseither2or3 for binaryor ternarycodes,andδ(C) is therelativeminimumdistanceparameterof thecodeC.Wealso definethe entropygapof the languagefamily{L1, . . . ,Lk}as thevalueofHq(δ(C))−1+R(C),which measures thedistanceof thecodepoint (R(C),δ(C)) fromtheGilbert–Varshamovline, that is, from thebehaviorofa typical randomcode. Asasourceofestimatesof complexityofa language family{L1, . . . ,Lk}onecanconsiderany upperboundonKolmogorovcomplexityof thecodeC. Apossibleapproach,whichcontainsmore linguistic input,wouldbetoprovideestimatesofcomplexityforeachindividual languageinthefamily and then compare these. Estimates of complexity for individual languageshavebeen considered in the literature, some of thembased on the description of languages in terms of their syntactic parameters. For instance, following[18], forasyntacticparameterΠwithpossiblevaluesv∈{±1}, theKolmogorovcomplexityofΠ set tovaluev isgivenby K(Π= v)= min τ expressingΠ KTU(τ), withtheminimumtakenoverthecomplexitiesofall theparsetreesthatexpressthesyntacticparameter ΠandrequireΠ= v tobegrammatical in the language.Notice that, in thisapproach, thesyntactic parametersarenot just regardedasbinaryor ternaryvalues,butoneneeds toconsideractualparse treesofsentences in the languagethatexpress theparameter. Thus, suchanapproachtocomplexity 452
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics