Seite - 8 - in Contributions to GRACE Gravity Field Recovery - Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations
Bild der Seite - 8 -
Text der Seite - 8 -
Multiple observation groups lk for the same set of parametersx can be combined at
the normal equation level by summation
N= n
∑
k=0 Nk n= n
∑
k=0 nk . (2.2.10)
The estimated covariance matrix of the adjusted parameters is the inverse of the normal
equation
Σˆxˆxˆ=N −1 . (2.2.11)
2.3 Decorrelation
For many problems, the stochastic model for the observations is given or estimated as
a covariance matrixΣll, and not as the weight matrixP needed to compute eq. (2.2.4).
As direct inversion ofΣll is expensive and, depending on the covariance structure, can
be numerically unstable (Bjo¨rck, 1996), it is desirable to avoid this operation. If the
given covariance matrix is positive definite, the Cholesky decomposition
Σll=W TW , (2.3.1)
exists, withW an upper triangular matrix. With
P= (
WTW )−1 =W−1W−T (2.3.2)
eq. (2.2.4) is
xˆ= (
ATW−1W−TA )−1 ATW−1W−Tl . (2.3.3)
With the transformation
A¯=W−TA , l¯=W−Tl (2.3.4)
this is
xˆ= (
A¯TA¯ )−1
A¯Tl¯ . (2.3.5)
Due to the upper triangular shape ofW , the decorrelated observations l¯and the decorre-
lated observation equations A¯ can be computed without knowing the inverseW−1 by
solving the system
WTx¯=x (2.3.6)
through back-substitution. The normal equation and the right hand side are computed
from the decorrelated matrices as
N= A¯TA¯ , n= A¯Tl¯ . (2.3.7)
Chapter2 Mathematical Theory and
Notation8
Contributions to GRACE Gravity Field Recovery
Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations
- Titel
- Contributions to GRACE Gravity Field Recovery
- Untertitel
- Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations
- Autor
- Matthias Ellmerr
- Verlag
- Verlag der Technischen Universität Graz
- Ort
- Graz
- Datum
- 2018
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-85125-646-8
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 185
- Schlagwörter
- Geodäsie, Gravitation, Geodesy, Physics, Physik
- Kategorien
- Naturwissenschaften Physik
- Technik