Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Contributions to GRACE Gravity Field Recovery - Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations
Seite - 10 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 10 - in Contributions to GRACE Gravity Field Recovery - Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations

Bild der Seite - 10 -

Bild der Seite - 10 - in Contributions to GRACE Gravity Field Recovery - Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations

Text der Seite - 10 -

2.6 Variance Component Estimation Aproblemoftenencounteredwhensolvingforasetofparameters is that thecovariance of the observations Σll is not exactly known. Similarly, when combining several observation groups at the normal equation level, the relative weight of the observations must be known to compute the optimal solution xˆ. One approach to determine these unknown weights and correlations is to treat them as unknown parameters in the adjustment problem and co-estimate the weights in an iterative procedure. This is known as variance component estimation (VCE). The outline in this section follows the reasoning given in Niemeier (2008). The fundamental extension to eq. (2.2.2) is that the single vector of residuals is split into multiple vectors of residualsei: l=Ax+e0+e1+ · · ·+en. (2.6.1) Eachof theseresidualvectorsshallhaveitsowncovariancematrixΣi, eachaconstituent of the complete covariance of the observations Σll= n ∑ i=0 Σi . (2.6.2) The structure ofΣi is given by a known cofactor matrixQ, which is then scaled by an unknown variance factorσ2i . Equation (2.6.2) is then Σll= n ∑ i=0 σ2iQi . (2.6.3) Using this scheme, an arbitrary covariance matrixΣll can be formed by choosing the right cofactor matrices and scaling them appropriately. Given an initial guess for the variance factors the optimal values are determined iteratively by introducing weights α2i =1, writing Σll= n ∑ i=0 α2i ( σ2iQi ) . (2.6.4) After computing the least squares solution of eq. (2.6.1) using this initial covariance matrix, the estimated weights are αˆ2i = Ω s , (2.6.5) with Ω= eˆTΣ−Tll ΣiΣ−1ll eˆ (2.6.6) and s= trace(RΣi) , (2.6.7) Chapter2 Mathematical Theory and Notation10
zurück zum  Buch Contributions to GRACE Gravity Field Recovery - Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations"
Contributions to GRACE Gravity Field Recovery Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations
Titel
Contributions to GRACE Gravity Field Recovery
Untertitel
Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations
Autor
Matthias Ellmerr
Verlag
Verlag der Technischen Universität Graz
Ort
Graz
Datum
2018
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-85125-646-8
Abmessungen
21.0 x 29.7 cm
Seiten
185
Schlagwörter
Geodäsie, Gravitation, Geodesy, Physics, Physik
Kategorien
Naturwissenschaften Physik
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Contributions to GRACE Gravity Field Recovery