Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Contributions to GRACE Gravity Field Recovery - Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations
Seite - 40 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 40 - in Contributions to GRACE Gravity Field Recovery - Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations

Bild der Seite - 40 -

Bild der Seite - 40 - in Contributions to GRACE Gravity Field Recovery - Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations

Text der Seite - 40 -

is introduced. Taking the derivative of eq. (5.3.2) w.r.t. the initial state gives ∂ y˙(τ) ∂y0 = ∂z(τ) ∂y0 = ∂z(τ) ∂y(τ) ∂y(τ) ∂y0 . (5.3.3) Introducing the matrix Zy= ∂z(τ) ∂y(τ) (5.3.4) eq. (5.3.3) can be compactly written as Φ˙=ZyΦ , (5.3.5) the differential equation of the state transition matrix. Similarly, taking the derivative of eq. (5.3.2) w.r.t. the force model parameters gives, using first the product rule and then the chain rule, ∂ y˙(τ) ∂p = ∂z(τ) ∂p = ∂z(τ) ∂p + ∂z(τ) ∂y(τ) ∂y(τ) ∂p . (5.3.6) Note that z(τ) is a function of p both directly through f(τ,r(τ),p, . . .), as well as indirectly through the satellite statey(τ), which also depends onp. Introducing the matrix Zp= ∂z(τ) ∂p (5.3.7) eq. (5.3.6) can be compactly written as S˙=ZyS+Zp , (5.3.8) the differential equation of the parameter sensitivity matrix. Looking closer, Zp(τ)=      ∂ r˙(τ) ∂p ∂ r¨(τ) ∂p      =     0 ∂f(τ) ∂p     , (5.3.9) which can be computed for all times τ. The inhomogeneous differential equation system formed by eqs. (5.3.5) and (5.3.8) −ZyΦ+Φ˙=0 (5.3.10) −ZyS+S˙=Zp (5.3.11) can be solved forS(τ) through the approach of variation of constants, yielding S(τ)=−Φ(τ) [∫ τ 0 Φ−1(τ′)Zp(τ′)dτ′+C ] . (5.3.12) The integration constant can be fixed toC=0due to eq. (5.3.1), resulting in S(τ)=−Φ(τ) ∫ τ 0 Φ−1(τ′)Zp(τ′)dτ′ , (5.3.13) Using this equation, the parameter sensitivity matrix for a complete orbit arc can be computed through integration from a known start value and the known quantitiesΦ andZp. Chapter5 Variational Equations40
zurück zum  Buch Contributions to GRACE Gravity Field Recovery - Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations"
Contributions to GRACE Gravity Field Recovery Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations
Titel
Contributions to GRACE Gravity Field Recovery
Untertitel
Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations
Autor
Matthias Ellmerr
Verlag
Verlag der Technischen Universität Graz
Ort
Graz
Datum
2018
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-85125-646-8
Abmessungen
21.0 x 29.7 cm
Seiten
185
Schlagwörter
Geodäsie, Gravitation, Geodesy, Physics, Physik
Kategorien
Naturwissenschaften Physik
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Contributions to GRACE Gravity Field Recovery