Seite - 70 - in Joint Austrian Computer Vision and Robotics Workshop 2020
Bild der Seite - 70 -
Text der Seite - 70 -
[3] ISO/IEC JTC1 SC37 Biometrics. ISO/IEC IS
19795-1:2006, it – Biometric performance testing
and reporting–Part1: Principles and framework.
[4] ISO/IECJTC1SC37Biometrics. ISO/IECIS30107-
1:2016, IT–Biometricpresentationattackdetection
–Part1: Framework.
[5] ISO/IECJTC1SC37Biometrics. ISO/IECIS30107-
3:2017, IT–Biometricpresentationattackdetection
–Part3: TestingandReporting.
[6] C. Kauba, B. Prommegger, and A. Uhl. Focus-
sing the beam - a new laser illumination based data
set providing insights to finger-vein recognition. In
2018 IEEE 9th Int. Conference on Biometrics The-
ory,ApplicationsandSystems(BTAS),LosAngeles,
California,USA, 2018.
[7] C. Kauba, B. Prommegger, and A. Uhl. Openvein
- an open-source modular multipurpose finger vein
scanner design. In A. Uhl, C. Busch, S. Marcel,
andR.Veldhuis, editors,HandbookofVascularBio-
metrics, chapter3.SpringerNatureSwitzerlandAG,
Cham,Switzerland, 2019.
[8] C. Kauba and A. Uhl. Shedding light on the veins
- reflected lightor transillumination inhand-vein re-
cognition. In Proceedings of the 11th IAPR/IEEE
Int.ConferenceonBiometrics(ICB’18),GoldCoast,
Queensland,Australia, 2018.
[9] C.KaubaandA.Uhl. Anavailableopen-sourcevein
recognitionframework. InA.Uhl,C.Busch,S.Mar-
cel, and R. Veldhuis, editors, Handbook of Vascular
Biometrics, chapter 4. Springer Nature Switzerland
AG,Cham,Switzerland,2019.
[10] D.Kocher,S.Schwarz,andA.Uhl. Empiricalevalu-
ationof lbp-extensionfeatures forfingerveinspoof-
ingdetection. In2016Int.Conferenceof theBiomet-
ricsSpecial InterestGroup (BIOSIG). IEEE, 2016.
[11] A. Kumar and Y. Zhou. Human identification us-
ing finger images. Image Processing, IEEE Trans-
actionson, 21(4), 2012.
[12] B. Maser, D. Söllinger, and A. Uhl. Prnu-based
detection of finger vein presentation attacks. In
20197thInt.WorkshoponBiometricsandForensics
(IWBF), 2019.
[13] A. Mittal, A. K. Moorthy, and A. C. Bovik. No-
reference image quality assessment in the spatial
domain. IEEE Transactions on image processing,
21(12), 2012.
[14] N.Miura,A.Nagasaka,andT.Miyatake. Extraction
of finger-vein patterns using maximum curvature
points in image profiles. IEICE transactions on in-
formationandsystems, 90(8), 2007.
[15] B. Mythily and K. Sathyaseelan. Measuring the
quality of image for fake biometric detection: ap-
plication to finger vein. In National conference
on research advances in communication, compu-
tation, electrical science and structures (NCRAC-
CESS), 2015. [16] D. T. Nguyen, Y. H. Park, K. Y. Shin, S. Y. Kwon,
H. C. Lee, and K. R. Park. Fake finger-vein image
detection based on fourier and wavelet transforms.
DigitalSignalProcessing, 23(5), 2013.
[17] D. T. Nguyen, H. S. Yoon, T. D. Pham, and K. R.
Park. Spoof detection for finger-vein recognition
system usingnir camera. Sensors, 17(10), 2017.
[18] X. Qiu, W. Kang, S. Tian, W. Jia, and Z. Huang.
Finger vein presentation attack detection using total
variation decomposition. IEEE Transactions on In-
formationForensicsand Security, 13(2), 2017.
[19] R. Raghavendra, M. Avinash, S. Marcel, and
C. Busch. Finger vein liveness detection using mo-
tion magnification. In 2015 IEEE 7th Int. Confer-
ence on Biometrics Theory, Applications and Sys-
tems (BTAS). IEEE,2015.
[20] R. Raghavendra and C. Busch. Presentation attack
detection algorithms for finger vein biometrics: A
comprehensive study. In 2015 11th Int. Conference
on Signal-Image Technology & Internet-Based Sys-
tems (SITIS). IEEE,2015.
[21] A. F. Sequeira, J. Ferryman, L. Chen, C. Galdi,
J.-L. Dugelay, V. Chiesa, A. Uhl, B. Prommegger,
C. Kauba, S. Kirchgasser, A. Grudzien, M. Kow-
alski, L. Szklarski, P. Maik, and P. Gmitrowicz.
PROTECT Multimodal DB: a multimodal biomet-
rics dataset envisaging border control. In Proceed-
ingsof the Int.Conferenceof theBiometricsSpecial
Interest Group (BIOSIG’18), Darmstadt, Germany,
2018.
[22] D. Söllinger, P. Trung, and A. Uhl. Non-reference
image quality assessment and natural scene statist-
ics to counter biometric sensor spoofing. IET Bio-
metrics, 7(4), 2018.
[23] S. Tirunagari, N. Poh, M. Bober, and D. Windridge.
Windowed dmd as a microtexture descriptor for fin-
ger vein counter-spoofing in biometrics. In 2015
IEEE Int. Workshop on Information Forensics and
Security (WIFS). IEEE,2015.
[24] P. Tome and S. Marcel. On the vulnerability of
palm vein recognition to spoofing attacks. In The
8th IAPR Int. Conference on Biometrics (ICB), May
2015.
[25] P. Tome, R. Raghavendra, C. Busch, S. Tirunagari,
N. Poh, B. Shekar, D. Gragnaniello, C. Sansone,
L. Verdoliva, and S. Marcel. The 1st competition
on counter measures to finger vein spoofing attacks.
In 2015 Int. Conference on Biometrics (ICB). IEEE,
2015.
[26] P. Tome, M. Vanoni, and S. Marcel. On the vul-
nerability of finger vein recognition to spoofing. In
IEEE Int. Conference of the Biometrics Special In-
terestGroup (BIOSIG), Sept. 2014.
[27] A.Uhl,C.Busch,S.Marcel,andR.Veldhuis. Hand-
bookof vascularbiometrics. Springer, 2020.
70
Joint Austrian Computer Vision and Robotics Workshop 2020
- Titel
- Joint Austrian Computer Vision and Robotics Workshop 2020
- Herausgeber
- Graz University of Technology
- Ort
- Graz
- Datum
- 2020
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-85125-752-6
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 188
- Kategorien
- Informatik
- Technik