Seite - 77 - in Joint Austrian Computer Vision and Robotics Workshop 2020
Bild der Seite - 77 -
Text der Seite - 77 -
References
[1] COCO 2018 Panoptic Segmentation Task.
http://cocodataset.org/index.htm#panoptic-
leaderboard. Accessed: 2020-01-31.
[2] E. Brachmann, A. Krull, S. Nowozin, J. Shotton,
F. Michel, S. Gumhold, and C. Rother. Dsac-
differentiable ransac for camera localization. In
Conference on Computer Vision and Pattern Recog-
nition, pages6684–6692,2017.
[3] L.-C. Chen, G. Papandreou, F. Schroff, and
H. Adam. Rethinking Atrous Convolution for Se-
mantic Image Segmentation. arXiv:1706.05587,
2017.
[4] M.Cordts,M.Omran,S.Ramos,T.Rehfeld,M.En-
zweiler, R. Benenson, U. Franke, S. Roth, and
B.Schiele. TheCityscapesDataset forSemanticUr-
ban Scene Understanding. In Conference on Com-
puter Vision and Pattern Recognition, pages 3213–
3223,2016.
[5] D. Feng, C. Haase-Schuetz, L. Rosenbaum,
H. Hertlein, F. Duffhauss, C. Glaeser, W. Wies-
beck, and K. Dietmayer. Deep Multi-Modal Ob-
ject Detection and Semantic Segmentation for Au-
tonomous Driving: Datasets, Methods, and Chal-
lenges. arXiv:1902.07830, 2019.
[6] C.-Y. Fu, T. L. Berg, and A. C. Berg. IMP: Instance
Mask Projection for High Accuracy Semantic Seg-
mentation of Things. In International Conference
onComputer Vision, pages 5178–5187, 2019.
[7] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald,
R. J. Douglas, and S. H. Seung. Digital Selection
and Analogue Amplification Coexist in a Cortex-
Inspired Silicon Circuit. Nature, 405(6789):947–
951,2000.
[8] K.He,G.Gkioxari,P.Dolla´r,andR.Girshick. Mask
R-CNN. In International Conference on Computer
Vision, pages 2961–2969,2017.
[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep Resid-
ual Learning for Image Recognition. In Conference
on Computer Vision and Pattern Recognition, pages
770–778,2016.
[10] S. Ioffe and C. Szegedy. Batch normalization: Ac-
celerating deep network training by reducing inter-
nal covariate shift. arXiv:1502.03167, 2015.
[11] A.Kirillov,R.Girshick,K.He,andP.Dolla´r.Panop-
tic Feature Pyramid Networks. In Conference on
Computer Vision and Pattern Recognition, pages
6399–6408, 2019.
[12] A. Kirillov, K. He, R. Girshick, C. Rother, and
P. Dolla´r. Panoptic Segmentation. In Conference
on Computer Vision and Pattern Recognition, pages
9404–9413, 2019.
[13] A. Kirillov, E. Levinkov, B. Andres, B. Savchyn-
skyy, andC.Rother. Instancecut: FromEdges to In-
stances with Multicut. In Conference on Computer Vision and Pattern Recognition, pages 5008–5017,
2017.
[14] J. Li, A. Raventos, A. Bhargava, T. Tagawa, and
A. Gaidon. Learning to Fuse Things and Stuff.
arXiv:1812.01192, 2018.
[15] Y. Li, X. Chen, Z. Zhu, L. Xie, G. Huang, D. Du,
and X. Wang. Attention-Guided Unified Network
for Panoptic Segmentation. In Conference on Com-
puter Vision and Pattern Recognition, pages 7026–
7035,2019.
[16] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei. Fully Convo-
lutional Instance-Aware Semantic Segmentation. In
Conference on Computer Vision and Pattern Recog-
nition, pages2359–2367, 2017.
[17] X. Liang, L. Lin, Y. Wei, X. Shen, J. Yang, and
S. Yan. Proposal-Free Network for Instance-Level
ObjectSegmentation. IEEETransactionsonPattern
Analysis and Machine Intelligence, 40(12):2978–
2991,2017.
[18] T.-Y. Lin, P. Dolla´r, R. Girshick, K. He, B. Hari-
haran, and S. Belongie. Feature Pyramid Networks
for Object Detection. In Conference on Computer
Vision and Pattern Recognition, pages 2117–2125,
2017.
[19] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Per-
ona, D. Ramanan, P. Dolla´r, and C. L. Zitnick. Mi-
crosoftCOCO:CommonObjects inContext. InEu-
ropeanConferenceonComputerVision, pages740–
755,2014.
[20] S. Liu, J. Jia, S. Fidler, and R. Urtasun. SGN: Se-
quentialGroupingNetworksfor InstanceSegmenta-
tion. In International Conference on Computer Vi-
sion, pages3496–3504,2017.
[21] S.Liu,L.Qi,H.Qin,J.Shi,andJ.Jia.PathAggrega-
tion Network for Instance Segmentation. In Confer-
ence on Computer Vision and Pattern Recognition,
pages 8759–8768,2018.
[22] J. Long, E. Shelhamer, and T. Darrell. Fully Con-
volutional Networks for Semantic Segmentation. In
Conference on Computer Vision and Pattern Recog-
nition, pages3431–3440, 2015.
[23] A. Petrovai and S. Nedevschi. Multi-Task Network
for Panoptic Segmentation in Automated Driving.
In Intelligent Transportation Systems Conference,
pages 2394–2401,2019.
[24] O. Ronneberger, P. Fischer, and T. Brox. U-
Net: Convolutional Networks for Biomedical Im-
age Segmentation. In Medical Image Computing
and Computer-Assisted Intervention, pages 234–
241,2015.
[25] J. Tighe, M. Niethammer, and S. Lazebnik. Scene
Parsing with Object Instances and Occlusion Order-
ing. In Conference on Computer Vision and Pattern
Recognition, pages 3748–3755,2014.
77
Joint Austrian Computer Vision and Robotics Workshop 2020
- Titel
- Joint Austrian Computer Vision and Robotics Workshop 2020
- Herausgeber
- Graz University of Technology
- Ort
- Graz
- Datum
- 2020
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-85125-752-6
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 188
- Kategorien
- Informatik
- Technik