Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Joint Austrian Computer Vision and Robotics Workshop 2020
Seite - 85 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 85 - in Joint Austrian Computer Vision and Robotics Workshop 2020

Bild der Seite - 85 -

Bild der Seite - 85 - in Joint Austrian Computer Vision and Robotics Workshop 2020

Text der Seite - 85 -

truth database. Pattern Recognition Letters, pages 88–97,2009. 4 [2] S. Chandra, C. Couprie, and I. Kokkinos. Deep spatio-temporal random fields for efficient video segmentation. In IEEEConferenceonComputerVi- sion and Pattern Recognition (CVPR), pages 8915– 8924,2018. 2 [3] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation. In European Conference on Computer Vision (ECCV), pages833–851,2018. 1,2, 4 [4] K. Cho, B. van Merrienboer, C¸. Gu¨lc¸ehre, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using rnn encoder-decoder for statisticalmachine translation. ArXiv, 2014. 2 [5] J. Chung, C. Gu¨lcehre, K. Cho, and Y. Bengio. Em- piricalevaluationofgatedrecurrentneuralnetworks onsequencemodeling. ArXiv, 2014. 2 [6] M.Cordts,M.Omran,S.Ramos,T.Rehfeld,M.En- zweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic ur- ban scene understanding. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages3213–3223. 1,2, 4 [7] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban driving simula- tor. InConferenceonRobotLearning(CoRL),pages 1–16,2017. 2, 4,5 [8] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes challenge: A retrospec- tive. International Journal of Computer Vision, pages98–136,2015. 2 [9] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision bench- marksuite. In IEEEConferenceonComputerVision andPatternRecognition(CVPR), pages3354–3361, 2012. 4 [10] K.Greff,R.K.Srivastava, J.Koutnik,B.R.Steune- brink, and J. Schmidhuber. LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks andLearningSystems, pages 2222–2232,2017. 2 [11] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, pages 1735–1780, 1997. 2 [12] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient convolutionalneuralnetworks formobilevisionapplications. ArXiv, 2017. 2 [13] R. Jozefowicz, W. Zaremba, and I. Sutskever. An empirical exploration of recurrent network archi- tectures. In International Conference on Machine Learning (ICML), pages 2342–2350, 2015. 2 [14] P. Kra¨henbu¨hl and V. Koltun. Efficient inference in fully connected crfs with gaussian edge potentials. In Proceedings of Advances in Neural Information ProcessingSystems, pages109–117,2011. 2 [15] P. Kra¨henbu¨hl and V. Koltun. Parameter learning and convergent inference for dense random fields. In International Conference on Machine Learning (ICML), pages III–513–III–521,2013. 2 [16] A. Kundu, V. Vineet, and V. Koltun. Feature space optimization for semantic video segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages3168–3175,2016. 2 [17] W.Liu,D.Anguelov,D.Erhan,C.Szegedy,S.Reed, C.-Y.Fu, andA.C.Berg. Ssd: Single shotmultibox detector. In European Conference on Computer Vi- sion (ECCV), pages 21–37,2016. 1 [18] Y. Lu, C. Lu, and C.-K. Tang. Online video ob- ject detection using association lstm. In IEEE In- ternationalConferenceonComputerVision(ICCV), pages 2363–2371,2017. 2 [19] S.Mehta,M.Rastegari,A.Caspi,L.G.Shapiro,and H. Hajishirzi. Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation. In European Conference on Computer Vision (ECCV), pages 561–580,2018. 1,2,3, 4,6 [20] G. Neuhold, T. Ollmann, S. Rota Bulo`, and P. Kontschieder. The mapillary vistas dataset for se- mantic understanding of street scenes. In IEEE In- ternationalConferenceonComputerVision(ICCV), pages 5000–5009,2017. 4 [21] C. Payer, D. Stern, M. Feiner, H. Bischof, and M.Urschler. Segmentingand trackingcell instances withcosineembeddingsandrecurrenthourglassnet- works. In International Conference on Medical Im- ageComputingandComputer-Assisted Intervention (MICCAI), 2018. 2 [22] S. shahabeddin Nabavi, M. Rochan, and Y. Wang. Future semantic segmentation with convolutional lstm. In British Machine Vision Conference (BMVC), 2018. 2 [23] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong,andW.-C.Woo. Convolutional lstmnetwork: A machine learning approach for precipitation now- casting. InProceedingsofAdvancesinNeuralInfor- mationProcessingSystems,pages802–810,2015.2, 3 [24] N. Srivastava, E. Mansimov, and R. R. Salakhutdi- nov. Unsupervised learningofvideorepresentations using lstms. In International Conference on Ma- chine Learning (ICML), pages 843–852,2015. 2 [25] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-v4, inception-resnet and the impact of residual connections on learning. In AAAI Con- ference on Artificial Intelligence, pages 4278–4284, 2016. 2 85
zurĂĽck zum  Buch Joint Austrian Computer Vision and Robotics Workshop 2020"
Joint Austrian Computer Vision and Robotics Workshop 2020
Titel
Joint Austrian Computer Vision and Robotics Workshop 2020
Herausgeber
Graz University of Technology
Ort
Graz
Datum
2020
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-85125-752-6
Abmessungen
21.0 x 29.7 cm
Seiten
188
Kategorien
Informatik
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Joint Austrian Computer Vision and Robotics Workshop 2020