Seite - 85 - in Joint Austrian Computer Vision and Robotics Workshop 2020
Bild der Seite - 85 -
Text der Seite - 85 -
truth database. Pattern Recognition Letters, pages
88–97,2009. 4
[2] S. Chandra, C. Couprie, and I. Kokkinos. Deep
spatio-temporal random fields for efficient video
segmentation. In IEEEConferenceonComputerVi-
sion and Pattern Recognition (CVPR), pages 8915–
8924,2018. 2
[3] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and
H. Adam. Encoder-decoder with atrous separable
convolution for semantic image segmentation. In
European Conference on Computer Vision (ECCV),
pages833–851,2018. 1,2, 4
[4] K. Cho, B. van Merrienboer, C¸. Gu¨lc¸ehre,
F. Bougares, H. Schwenk, and Y. Bengio. Learning
phrase representations using rnn encoder-decoder
for statisticalmachine translation. ArXiv, 2014. 2
[5] J. Chung, C. Gu¨lcehre, K. Cho, and Y. Bengio. Em-
piricalevaluationofgatedrecurrentneuralnetworks
onsequencemodeling. ArXiv, 2014. 2
[6] M.Cordts,M.Omran,S.Ramos,T.Rehfeld,M.En-
zweiler, R. Benenson, U. Franke, S. Roth, and
B. Schiele. The cityscapes dataset for semantic ur-
ban scene understanding. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages3213–3223. 1,2, 4
[7] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and
V. Koltun. CARLA: An open urban driving simula-
tor. InConferenceonRobotLearning(CoRL),pages
1–16,2017. 2, 4,5
[8] M. Everingham, S. M. A. Eslami, L. Van Gool,
C. K. I. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes challenge: A retrospec-
tive. International Journal of Computer Vision,
pages98–136,2015. 2
[9] A. Geiger, P. Lenz, and R. Urtasun. Are we ready
for autonomous driving? the kitti vision bench-
marksuite. In IEEEConferenceonComputerVision
andPatternRecognition(CVPR), pages3354–3361,
2012. 4
[10] K.Greff,R.K.Srivastava, J.Koutnik,B.R.Steune-
brink, and J. Schmidhuber. LSTM: A Search Space
Odyssey. IEEE Transactions on Neural Networks
andLearningSystems, pages 2222–2232,2017. 2
[11] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Computation, pages 1735–1780,
1997. 2
[12] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam.
Mobilenets: Efficient convolutionalneuralnetworks
formobilevisionapplications. ArXiv, 2017. 2
[13] R. Jozefowicz, W. Zaremba, and I. Sutskever. An
empirical exploration of recurrent network archi-
tectures. In International Conference on Machine
Learning (ICML), pages 2342–2350, 2015. 2 [14] P. Kra¨henbu¨hl and V. Koltun. Efficient inference in
fully connected crfs with gaussian edge potentials.
In Proceedings of Advances in Neural Information
ProcessingSystems, pages109–117,2011. 2
[15] P. Kra¨henbu¨hl and V. Koltun. Parameter learning
and convergent inference for dense random fields.
In International Conference on Machine Learning
(ICML), pages III–513–III–521,2013. 2
[16] A. Kundu, V. Vineet, and V. Koltun. Feature space
optimization for semantic video segmentation. In
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages3168–3175,2016. 2
[17] W.Liu,D.Anguelov,D.Erhan,C.Szegedy,S.Reed,
C.-Y.Fu, andA.C.Berg. Ssd: Single shotmultibox
detector. In European Conference on Computer Vi-
sion (ECCV), pages 21–37,2016. 1
[18] Y. Lu, C. Lu, and C.-K. Tang. Online video ob-
ject detection using association lstm. In IEEE In-
ternationalConferenceonComputerVision(ICCV),
pages 2363–2371,2017. 2
[19] S.Mehta,M.Rastegari,A.Caspi,L.G.Shapiro,and
H. Hajishirzi. Espnet: Efficient spatial pyramid of
dilated convolutions for semantic segmentation. In
European Conference on Computer Vision (ECCV),
pages 561–580,2018. 1,2,3, 4,6
[20] G. Neuhold, T. Ollmann, S. Rota Bulo`, and
P. Kontschieder. The mapillary vistas dataset for se-
mantic understanding of street scenes. In IEEE In-
ternationalConferenceonComputerVision(ICCV),
pages 5000–5009,2017. 4
[21] C. Payer, D. Stern, M. Feiner, H. Bischof, and
M.Urschler. Segmentingand trackingcell instances
withcosineembeddingsandrecurrenthourglassnet-
works. In International Conference on Medical Im-
ageComputingandComputer-Assisted Intervention
(MICCAI), 2018. 2
[22] S. shahabeddin Nabavi, M. Rochan, and Y. Wang.
Future semantic segmentation with convolutional
lstm. In British Machine Vision Conference
(BMVC), 2018. 2
[23] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K.
Wong,andW.-C.Woo. Convolutional lstmnetwork:
A machine learning approach for precipitation now-
casting. InProceedingsofAdvancesinNeuralInfor-
mationProcessingSystems,pages802–810,2015.2,
3
[24] N. Srivastava, E. Mansimov, and R. R. Salakhutdi-
nov. Unsupervised learningofvideorepresentations
using lstms. In International Conference on Ma-
chine Learning (ICML), pages 843–852,2015. 2
[25] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi.
Inception-v4, inception-resnet and the impact of
residual connections on learning. In AAAI Con-
ference on Artificial Intelligence, pages 4278–4284,
2016. 2
85
Joint Austrian Computer Vision and Robotics Workshop 2020
- Titel
- Joint Austrian Computer Vision and Robotics Workshop 2020
- Herausgeber
- Graz University of Technology
- Ort
- Graz
- Datum
- 2020
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-85125-752-6
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 188
- Kategorien
- Informatik
- Technik