Seite - 113 - in Joint Austrian Computer Vision and Robotics Workshop 2020
Bild der Seite - 113 -
Text der Seite - 113 -
ACKNOWLEDGMENT
Thisworkhasbeensupportedby theAustrianRe-
searchPromotionAgency in theprogramProduction
of the Future funded project MMAssist II (FFG No.
858623), the Austrian Ministry for Transport, Inno-
vationandTechnology(bmvit) and theAustrianSci-
ence Foundation (FWF) under grant agreement No.
I3969-N30 (InDex).
References
[1] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser,
C. Hazirbas, V. Golkov, P. Van Der Smagt, D. Cre-
mers, and T. Brox. Flownet: Learning optical flow
with convolutional networks. In Proceedings of the
IEEE international conference on computer vision,
pages2758–2766,2015.
[2] K.He,G.Gkioxari,P.Dolla´r,andR.Girshick. Mask
r-cnn. InProceedingsof theIEEEinternationalcon-
ferenceoncomputervision,pages2961–2969,2017.
[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In Proceedings of
IEEE Conference on Computer Vision and Pattern
Recognition, pages770–778,2016.
[4] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer,
G. Bradski, K. Konolige, and N. Navab. Model
based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes.
In Proceedings of Asian conference on computer vi-
sion, pages548–562,2012.
[5] T. Hodan, F. Michel, E. Brachmann, W. Kehl,
A. GlentBuch, D. Kraft, B. Drost, J. Vidal, S. Ihrke,
X.Zabulis,etal. Bop: Benchmarkfor6dobjectpose
estimation. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 19–34,
2018.
[6] M. Jaderberg, K. Simonyan, A. Zisserman, et al.
Spatial transformernetworks. InAdvances inneural
information processing systems, pages 2017–2025,
2015.
[7] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and
N. Navab. SSD-6D: making rgb-based 3d detec-
tion and 6d pose estimation great again. CoRR,
abs/1711.10006,2017.
[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information pro-
cessingsystems, pages 1097–1105,2012.
[9] K. Lenc and A. Vedaldi. Understanding image rep-
resentations by measuring their equivariance and
equivalence. InProceedingsof the IEEEconference
on computer vision and pattern recognition, pages
991–999,2015.
[10] Y.Li,G.Wang,X.Ji,Y.Xiang,andD.Fox.Deepim:
Deep iterative matching for 6d pose estimation. In Proceedings of the European Conference on Com-
puterVision (ECCV), pages 683–698,2018.
[11] C.-H. Lin, E. Yumer, O. Wang, E. Shechtman, and
S. Lucey. St-gan: Spatial transformer generative
adversarial networks for image compositing. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 9455–9464,
2018.
[12] F. Manhardt, W. Kehl, N. Navab, and F. Tombari.
Deepmodel-based6dposerefinementinrgb. InPro-
ceedings of the European Conference on Computer
Vision (ECCV), pages800–815,2018.
[13] M. Oberweger, M. Rad, and V. Lepetit. Making
deep heatmaps robust to partial occlusions for 3d
object pose estimation. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV),
pages 119–134,2018.
[14] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Point-
net: Deep learningonpoint sets for3dclassification
and segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 652–660,2017.
[15] C.R.Qi,L.Yi,H.Su,andL.J.Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in
a metric space. In Advances in neural information
processing systems, pages 5099–5108,2017.
[16] M. Rad and V. Lepetit. Bb8: A scalable, accurate,
robust topartial occlusionmethod forpredicting the
3dposesofchallengingobjectswithoutusingdepth.
In Proceedings of the IEEE International Confer-
ence onComputerVision, pages3828–3836,2017.
[17] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale
visual recognition challenge. International Journal
ofComputer Vision, 115:211–252, 2015.
[18] M. Sundermeyer, Z.-C. Marton, M. Durner,
M. Brucker, and R. Triebel. Implicit 3d orientation
learning for6dobjectdetection from rgb images. In
Proceedings of the European Conference on Com-
puterVision (ECCV), pages 699–715,2018.
[19] D. E. Worrall, S. J. Garbin, D. Turmukhambetov,
and G. J. Brostow. Interpretable transformations
with encoder-decoder networks. In Proceedings of
the IEEEInternationalConferenceonComputerVi-
sion, pages5726–5735,2017.
[20] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox.
Posecnn: Aconvolutionalneuralnetwork for6dob-
jectposeestimation inclutteredscenes. 2018.
[21] S.Zakharov, I.Shugurov,andS. Ilic. Dpod: 6dpose
object detector and refiner. In Proceedings of the
IEEEInternationalConferenceonComputerVision,
pages 1941–1950,2019.
113
Joint Austrian Computer Vision and Robotics Workshop 2020
- Titel
- Joint Austrian Computer Vision and Robotics Workshop 2020
- Herausgeber
- Graz University of Technology
- Ort
- Graz
- Datum
- 2020
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-85125-752-6
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 188
- Kategorien
- Informatik
- Technik