Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Joint Austrian Computer Vision and Robotics Workshop 2020
Seite - 121 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 121 - in Joint Austrian Computer Vision and Robotics Workshop 2020

Bild der Seite - 121 -

Bild der Seite - 121 - in Joint Austrian Computer Vision and Robotics Workshop 2020

Text der Seite - 121 -

a previous implementation of the CarCutter service. Direct comparisonofmasksgeneratedbyour imple- mentationwithonesgeneratedbytheserviceinApril of2019 showeda reductionof65% in thesegmenta- tionerrorasmeasuredbytheJaccardindex. With the exception of our postprocessing procedure the pre- sented methods are applicable to the general image segmentation task. Acknowledgments We would like to thank micardo GmbH3 for a fruitful collaboration and the use of their private dataset. This work has been partly funded by the Austriansecurity researchprogrammeKIRASof the FederalMinistryforTransport, InnovationandTech- nology (bmvit)underGrant873495. References [1] V.Badrinarayanan,A.Kendall, andR.Cipolla. Seg- net: Adeepconvolutionalencoder-decoderarchitec- ture for image segmentation. 2017 IEEE Transac- tions on Pattern Analysis and Machine Intelligence (TPAMI), 2017. [2] M.Cordts,M.Omran,S.Ramos,T.Rehfeld,M.En- zweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic ur- ban scene understanding. In 2016 IEEE Confer- ence on Computer Vision and Pattern Recognition (CVPR), pages3213–3223, June2016. [3] D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels with a common multi- scale convolutional architecture. In Proceedings of the 2015 IEEE International Conference on Com- puter Vision (ICCV), ICCV ’15, pages 2650–2658, Washington,DC,USA,2015. IEEEComputerSoci- ety. [4] Feng Ning, D. Delhomme, Y. LeCun, F. Piano, L. Bottou, and P. E. Barbano. Toward automatic phenotyping of developing embryos from videos. 2005IEEETransactionsonImageProcessing(TIP), 14(9):1360–1371,Sep.2005. [5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. 2016 IEEE Confer- ence on Computer Vision and Pattern Recognition (CVPR), pages770–778,2016. [6] V. Iglovikov and A. Shvets. Ternausnet: U-net with VGG11 encoder pre-trained on imagenet for image segmentation. CoRR, abs/1801.05746, 2018. [7] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal of ComputerVision, 1(4):321–331,1988. 3https://www.micardo.com/ (accessedFebruary24, 2020) [8] M. Khened, V. Alex Kollerathu, and G. Krish- namurthi. Fully convolutional multi-scale resid- ual densenets for cardiac segmentation and auto- mated cardiac diagnosis using ensemble of classi- fiers. Medical Image Analysis, 51, 012018. [9] F. Milletari, N. Navab, and S. Ahmadi. V-net: Fully convolutional neural networks for volumetric med- ical image segmentation. In 2016 Fourth Interna- tional Conference on 3D Vision (3DV), pages 565– 571,Oct2016. [10] C. Rhemann, C. Rother, J. Wang, M. Gelautz, P. Kohli, and P. Rott. A perceptually motivated on- line benchmark for image matting. In 2009 IEEE Conference on Computer Vision and Pattern Recog- nition (CVPR), pages 1826–1833, June2009. [11] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolutional networks for biomedical image seg- mentation. In 2015 Medical Image Computing andComputer-AssistedIntervention(MICCAI), vol- ume9351ofLNCS, pages234–241.Springer,2015. (availableon arXiv:1505.04597 [cs.CV]). [12] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Lecun. Overfeat: Integrated recognition, localization and detection using convo- lutionalnetworks. In2014InternationalConference on Learning Representations (ICLR), CBLS, April 2014, 2014. [13] E. Shelhamer, J. Long, and T. Darrell. Fully convo- lutional networks for semantic segmentation. 2017 IEEETransactionsonPatternAnalysisandMachine Intelligence (TPAMI), 39(4):640–651,Apr.2017. [14] K. Simonyan and A. Zisserman. Very deep convo- lutional networks for large-scale image recognition. In 2015 International Conference on Learning Rep- resentations (ICLR), 2015. [15] J. Xu, H. Guo, A. Kageza, S. Wu, and S. AlQarni. Removing background with semantic segmentation basedonensemble learning. EAI, 92018. [16] N. Xu, B. Price, S. Cohen, and T. Huang. Deep im- agematting. In2017IEEEConferenceonComputer VisionandPatternRecognition(CVPR), pages311– 320, July 2017. 121
zurĂĽck zum  Buch Joint Austrian Computer Vision and Robotics Workshop 2020"
Joint Austrian Computer Vision and Robotics Workshop 2020
Titel
Joint Austrian Computer Vision and Robotics Workshop 2020
Herausgeber
Graz University of Technology
Ort
Graz
Datum
2020
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-85125-752-6
Abmessungen
21.0 x 29.7 cm
Seiten
188
Kategorien
Informatik
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Joint Austrian Computer Vision and Robotics Workshop 2020