Seite - 121 - in Joint Austrian Computer Vision and Robotics Workshop 2020
Bild der Seite - 121 -
Text der Seite - 121 -
a previous implementation of the CarCutter service.
Direct comparisonofmasksgeneratedbyour imple-
mentationwithonesgeneratedbytheserviceinApril
of2019 showeda reductionof65% in thesegmenta-
tionerrorasmeasuredbytheJaccardindex. With the
exception of our postprocessing procedure the pre-
sented methods are applicable to the general image
segmentation task.
Acknowledgments
We would like to thank micardo GmbH3 for a
fruitful collaboration and the use of their private
dataset. This work has been partly funded by the
Austriansecurity researchprogrammeKIRASof the
FederalMinistryforTransport, InnovationandTech-
nology (bmvit)underGrant873495.
References
[1] V.Badrinarayanan,A.Kendall, andR.Cipolla. Seg-
net: Adeepconvolutionalencoder-decoderarchitec-
ture for image segmentation. 2017 IEEE Transac-
tions on Pattern Analysis and Machine Intelligence
(TPAMI), 2017.
[2] M.Cordts,M.Omran,S.Ramos,T.Rehfeld,M.En-
zweiler, R. Benenson, U. Franke, S. Roth, and
B. Schiele. The cityscapes dataset for semantic ur-
ban scene understanding. In 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages3213–3223, June2016.
[3] D. Eigen and R. Fergus. Predicting depth, surface
normals and semantic labels with a common multi-
scale convolutional architecture. In Proceedings of
the 2015 IEEE International Conference on Com-
puter Vision (ICCV), ICCV ’15, pages 2650–2658,
Washington,DC,USA,2015. IEEEComputerSoci-
ety.
[4] Feng Ning, D. Delhomme, Y. LeCun, F. Piano,
L. Bottou, and P. E. Barbano. Toward automatic
phenotyping of developing embryos from videos.
2005IEEETransactionsonImageProcessing(TIP),
14(9):1360–1371,Sep.2005.
[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages770–778,2016.
[6] V. Iglovikov and A. Shvets. Ternausnet: U-net with
VGG11 encoder pre-trained on imagenet for image
segmentation. CoRR, abs/1801.05746, 2018.
[7] M. Kass, A. Witkin, and D. Terzopoulos. Snakes:
Active contour models. International Journal of
ComputerVision, 1(4):321–331,1988.
3https://www.micardo.com/ (accessedFebruary24, 2020) [8] M. Khened, V. Alex Kollerathu, and G. Krish-
namurthi. Fully convolutional multi-scale resid-
ual densenets for cardiac segmentation and auto-
mated cardiac diagnosis using ensemble of classi-
fiers. Medical Image Analysis, 51, 012018.
[9] F. Milletari, N. Navab, and S. Ahmadi. V-net: Fully
convolutional neural networks for volumetric med-
ical image segmentation. In 2016 Fourth Interna-
tional Conference on 3D Vision (3DV), pages 565–
571,Oct2016.
[10] C. Rhemann, C. Rother, J. Wang, M. Gelautz,
P. Kohli, and P. Rott. A perceptually motivated on-
line benchmark for image matting. In 2009 IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 1826–1833, June2009.
[11] O. Ronneberger, P.Fischer, and T. Brox. U-net:
Convolutional networks for biomedical image seg-
mentation. In 2015 Medical Image Computing
andComputer-AssistedIntervention(MICCAI), vol-
ume9351ofLNCS, pages234–241.Springer,2015.
(availableon arXiv:1505.04597 [cs.CV]).
[12] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu,
R. Fergus, and Y. Lecun. Overfeat: Integrated
recognition, localization and detection using convo-
lutionalnetworks. In2014InternationalConference
on Learning Representations (ICLR), CBLS, April
2014, 2014.
[13] E. Shelhamer, J. Long, and T. Darrell. Fully convo-
lutional networks for semantic segmentation. 2017
IEEETransactionsonPatternAnalysisandMachine
Intelligence (TPAMI), 39(4):640–651,Apr.2017.
[14] K. Simonyan and A. Zisserman. Very deep convo-
lutional networks for large-scale image recognition.
In 2015 International Conference on Learning Rep-
resentations (ICLR), 2015.
[15] J. Xu, H. Guo, A. Kageza, S. Wu, and S. AlQarni.
Removing background with semantic segmentation
basedonensemble learning. EAI, 92018.
[16] N. Xu, B. Price, S. Cohen, and T. Huang. Deep im-
agematting. In2017IEEEConferenceonComputer
VisionandPatternRecognition(CVPR), pages311–
320, July 2017.
121
Joint Austrian Computer Vision and Robotics Workshop 2020
- Titel
- Joint Austrian Computer Vision and Robotics Workshop 2020
- Herausgeber
- Graz University of Technology
- Ort
- Graz
- Datum
- 2020
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-85125-752-6
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 188
- Kategorien
- Informatik
- Technik