Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Joint Austrian Computer Vision and Robotics Workshop 2020
Seite - 136 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 136 - in Joint Austrian Computer Vision and Robotics Workshop 2020

Bild der Seite - 136 -

Bild der Seite - 136 - in Joint Austrian Computer Vision and Robotics Workshop 2020

Text der Seite - 136 -

ferent object masks. This would enable the network to learn a bigger amount of object views, than those that a human demonstrator can show in a reasonable time. Ourmethodworkswellwhenfacingrigidobjects, when the number of unique views is limited. How- ever, when it comes to deformable objects, number of unique views increases dramatically. Therefore, in thosecases theefficiencyofourmethoddropssig- nificantly. 5.Conclusion In this paper we intend to highlight open prob- lems of a standard object detector when applied to slightly and highly deformable objects. We specifi- callytrainedtheYOLOv3detector tocopewiththese cases. To reduce the time consuming effort of image annotations, we proposed an automated method for synthesizing the training images. The idea is toshow objectson simplebackgroundanduseashortvideos and a few annotations with augmentation of training data to obtain better performance. While this works well forrigidobjectswithanAPof87.38%,weshow that for slightly deformable objects like scissors and headphones the detection performance drops signifi- cantlyto49.54%. Thedropis,asexpectedevenmore drastic for highly deformable objects like a chain or earphones,down toAPof 26.58%. Using the example of a chain we show that it is possible to pose the problem of detection of the de- formable objects as detection of its elementary rigid element-a link. Tofurther tackle thisproblem,mod- elling of deformable objects could be used for syn- theticdata generation. Acknowledgment This research is partially supported by the Vienna Science and Technology Fund (WWTF), project RALLI (ICT15-045andFestoAG&Co. KG. References [1] M.Cimpoi,S.Maji, I.Kokkinos,S.Mohamed, ,and A. Vedaldi. Describing textures in the wild. In Pro- ceedings of the IEEE Conf. on Computer Visionand PatternRecognition (CVPR), 2014. [2] D. Dwibedi, I. Misra, and M. Hebert. Cut, paste and learn: Surprisingly easy synthesis for instance detection. In Proceedings of the IEEE International Conference on Computer Vision, pages 1301–1310, 2017. [3] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual ob- ject classes (voc) challenge. International Journal ofComputer Vision, 88(2):303–338, June2010. [4] G. Georgakis, A. Mousavian, A. C. Berg, and J. Kosecka. Synthesizing training data for ob- ject detection in indoor scenes. arXiv preprint arXiv:1702.07836, 2017. [5] G. Georgakis, M. A. Reza, A. Mousavian, P.-H. Le, and J. Kosˇecka´. Multiview rgb-d dataset for ob- ject instancedetection. In2016FourthInternational Conference on 3D Vision (3DV), pages 426–434. IEEE,2016. [6] J.Huh,K.Lee, I.Lee, andS.Lee. Asimplemethod on generating synthetic data for training real-time object detection networks. In 2018 Asia-Pacific Signal and Information Processing Association An- nual Summit and Conference (APSIPA ASC), pages 1518–1522,Nov2018. [7] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov, M. Malloci, T. Duerig, and V. Ferrari. The open im- ages dataset v4: Unified image classification, object detection, and visual relationship detection at scale. arXiv:1811.00982, 2018. [8] K. Lai, L. Bo, and D. Fox. Unsupervised feature learning for 3d scene labeling. In 2014 IEEE In- ternationalConferenceonRoboticsandAutomation (ICRA), pages3050–3057. IEEE,2014. [9] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Per- ona, D. Ramanan, P. Dolla´r, and C. L. Zitnick. Mi- crosoft coco: Common objects in context. In Eu- ropean conference on computer vision, pages 740– 755.Springer, 2014. [10] Y. Liu, Y. Wang, S. Wang, T. Liang, Q. Zhao, Z. Tang, and H. Ling. Cbnet: A novel composite backbone network architecture for object detection. arXivpreprintarXiv:1909.03625, 2019. [11] P. Pe´rez, M. Gangnet, and A. Blake. Poisson im- age editing. ACM Transactions on graphics (TOG), 22(3):313–318,2003. [12] A. Quattoni and A. Torralba. Recognizing indoor scenes. In 2009 IEEE Conference on Computer Vi- sion and Pattern Recognition, pages 413–420, June 2009. [13] J. Redmon and A. Farhadi. Yolov3: An incremen- tal improvement. arXiv preprint arXiv:1804.02767, 2018. [14] S.Ren,K.He,R.Girshick, andJ.Sun. Faster r-cnn: Towards real-time object detection with region pro- posal networks. In Advances in neural information processing systems, pages 91–99,2015. [15] K.Wang,F.Shi,W.Wang,Y.Nan,andS.Lian. Syn- thetic data generation and adaption for object de- tection in smart vending machines. arXiv preprint arXiv:1904.12294, 2019. 136
zurĂĽck zum  Buch Joint Austrian Computer Vision and Robotics Workshop 2020"
Joint Austrian Computer Vision and Robotics Workshop 2020
Titel
Joint Austrian Computer Vision and Robotics Workshop 2020
Herausgeber
Graz University of Technology
Ort
Graz
Datum
2020
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-85125-752-6
Abmessungen
21.0 x 29.7 cm
Seiten
188
Kategorien
Informatik
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Joint Austrian Computer Vision and Robotics Workshop 2020