Seite - 150 - in Joint Austrian Computer Vision and Robotics Workshop 2020
Bild der Seite - 150 -
Text der Seite - 150 -
up new possibilities in areas where acquiring clean
training data is too timeconsumingor infeasible.
There are some limitations that we leave for future
research. Due to the structure of our dataset, the num-
berofsamplesavailable forN2Nlearningwas limited
by the available ground truth targets. Since N2N does
not require manual frame editing, it is possible to
increase the size of the dataset without much effort.
Along with the increase of the size of the dataset,
the model complexity could be increased, typically
resulting in better performance.
Acknowledgements
The authors acknowledge grant support from
the National Institutes of Health under grant
1R01EB024532-02.
References
[1] P. Arias and J. Morel. Video denoising via empirical
bayesian estimation of space-time patches. JMIV,
60:70–93,2018.
[2] H.C.Burger,C. J.Schuler, andS.Harmeling. Image
denoising: Canplainneuralnetworkscompetewith
BM3D? InCVPR, 2012.
[3] J. Caballero, C. Ledig, A. Aitken, A. Acosta, J. Totz,
Z. Wang, and W. Shi. Real-time video super-
resolution with spatio-temporal networks and motion
compensation.CVPR, 2017.
[4] A. Chambolle. An algorithm for total variation mini-
mization and applications. JMIV, 20(1):89–97, 2004.
[5] M.ClausandJ.C.vanGemert. ViDeNN:Deepblind
videodenoising. InCVPRWorkshops, 2019.
[6] K.Dabov,A.Foi,V.Katkovnik, andK.Egiazarian.
Imagedenoisingbysparse3-d transform-domaincol-
laborativefiltering. IP, 16(8):2080–2095, 2007.
[7] T.Ehret,A.Davy, J.Morel,G.Facciolo, andP.Arias.
Model-blind video denoising via frame-to-frame
training. InCVPR, 2019.
[8] S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang.
Toward convolutional blind denoising of real pho-
tographs. InCVPR, 2019.
[9] K.He,X.Zhang,S.Ren, andJ.Sun. Deep residual
learning for image recognition. InCVPR, 2016.
[10] S. Ioffe and C. Szegedy. Batch normalization: Ac-
celeratingdeepnetwork trainingby reducing internal
covariate shift. In ICML, 2015.
[11] V. JainandH.Seung. Natural image denoisingwith
convolutionalnetworks. InNIPS, 2008.
[12] D. P. Kingma and J. L. Ba. Adam: A method for
stochasticoptimization. In ICLR, 2015.
[13] E. Kobler, T. Klatzer, K. Hammernik, and T. Pock.
Variational networks: Connecting variational meth-
odsanddeep learning. InGCPR, 2017. [14] S. Laine, J. Lehtinen, and T. Aila. Improved self-
superviseddeep imagedenoising. In ICLR, 2019.
[15] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine,
T. Karras, M. Aittala, and T. Aila. Noise2Noise:
Learning image restoration without clean data. In
ICML, 2018.
[16] J. Long, E. Shelhamer, and T. Darrell. Fully convolu-
tionalnetworks for semantic segmentation. InCVPR,
2015.
[17] M. Maggioni, G. Boracchi, A. Foi, and K. Egiazar-
ian. Videodenoising,deblocking, andenhancement
through separable 4-d nonlocal spatiotemporal trans-
forms. IP, 21(9):3952–3966, 2012.
[18] X.-J.Mao,C.Shen, andY.-B.Yang. Image restora-
tion using convolutional auto-encoders with symmet-
ric skipconnections.ArXiv, abs/1606.08921,2016.
[19] X.-J.Mao,C.Shen, andY.-B.Yang. Image restora-
tionusingverydeepconvolutional encoder-decoder
networks with symmetric skip connections. InNIPS,
2016.
[20] V. Nair and G. Hinton. Relus improve restricted
boltzmann machines. In ICML, 2010.
[21] S. Niklaus and F. Liu. Context-aware synthesis for
video frame interpolation. InCVPR, 2018.
[22] Y. Roh, G. Heo, and S. E. Whang. A survey on
datacollection formachine learning: Abigdata - ai
integrationperspective.KDE, 2019.
[23] O. Ronneberger, P. Fischer, and T. Brox. U-net: Con-
volutionalnetworks forbiomedical image segmenta-
tion. InMICCAI, 2015.
[24] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total
variationbasednoise removal algorithms.PhysicaD,
60(1):259–268,1992.
[25] S.Su,M.Delbracio, J.Wang,G.Sapiro,W.Heidrich,
andO.Wang. Deepvideodeblurring forhand-held
cameras.CVPR, 2017.
[26] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net:
CNNsforopticalflowusingpyramid,warping, and
costvolume. InCVPR, 2018.
[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D.Anguelov,D.Erhan,V.Vanhoucke, andA.Rabi-
novich. Goingdeeperwithconvolutions. InCVPR,
2015.
[28] M. Tassano, J. Delon, and T. Veit. DVDnet: A fast
Network forDeepVideoDenoising. In ICIP, 2019.
[29] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and
C. Schmid. Deepflow: Large displacement optical
flowwithdeepmatching. ICCV, 2013.
[30] K.Zhang, W.Zuo, Y. Chen, D.Meng, andL. Zhang.
Beyond a gaussian denoiser: Residual learning of
deepCNNforimagedenoising. IP,26(7):3142–3155,
2017.
[31] K. Zhang, W. Zuo, and L. Zhang. Ffdnet: Toward
a fast and flexible solution for CNN based image
denoising. IP, 2018.
150
Joint Austrian Computer Vision and Robotics Workshop 2020
- Titel
- Joint Austrian Computer Vision and Robotics Workshop 2020
- Herausgeber
- Graz University of Technology
- Ort
- Graz
- Datum
- 2020
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-85125-752-6
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 188
- Kategorien
- Informatik
- Technik