Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Joint Austrian Computer Vision and Robotics Workshop 2020
Seite - 164 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 164 - in Joint Austrian Computer Vision and Robotics Workshop 2020

Bild der Seite - 164 -

Bild der Seite - 164 - in Joint Austrian Computer Vision and Robotics Workshop 2020

Text der Seite - 164 -

bediscriminatedbytheconcave/convexshapes. Sec- ondly, we concentrated only on description of layer 1, as imperfections in its segmentationpropagated to subsequent layers. As the segmentation algorithms mature, descriptors of remaining layers could be in- corporated. With an increased number of features, the ensemble-based detectors (FB in this work) may improve in their performance. Finally, after the seg- mentation algorithms become very advanced, it may turn out that the area-related descriptors loose their discriminative power and a need for completely new set descriptors may arise. In the proposed semi- supervised framework, the manually crafted features can be replaced by ones proposed by auto-encoders [1]orgenerativeadversarial neuralnetworks [8]. References [1] C. C. Aggarwal. Outlier analysis. In Data mining, pages75–79. Springer, 2015. [2] F. Angiulli and C. Pizzuti. Fast outlier detection in high dimensional spaces. In European Conference on Principles of Data Mining and Knowledge Dis- covery, pages 15–27. Springer, 2002. [3] C. M. Bishop. Pattern Recognition and Machine Learning, chapter 3.1.4: Regularized least squares, pages144–145. Springer, 2006. [4] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J.Sander. LOF: Identifyingdensity-based localout- liers. In ACM sigmod record, volume 29, pages 93– 104.ACM,2000. [5] M. K. Garvin, M. D. Abramoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka. Auto- mated 3-d intraretinal layer segmentation of macu- lar spectral-domain optical coherence tomography images. IEEE Transactions on Medical Imaging, 28(9):1436–1447,Sep.2009. [6] V. Hodge. A survey of outlier detection methodolo- gies. Artificial Intelligence Review, 22:85–126, 10 2004. [7] A.LazarevicandV.Kumar. Featurebaggingforout- lier detection. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pages 157–166. ACM, 2005. [8] Y. Liu, Z. Li, C. Zhou, Y. Jiang, J. Sun, M. Wang, andX.He. Generativeadversarialactivelearningfor unsupervised outlier detection. IEEE Transactions onKnowledge andDataEngineering, 2019. [9] P.J.Mekjavic,V.J.Balciu¨niene,L.Ceklic,J.Ernest, Z.Jamrichova,Z.Z.Nagy, I.Petkova,S.Teper, I.G. Topcic, and M. Veith. The burden of macular dis- eases in central and eastern Europe —- implications forhealthcare systems. Value inHealthRegional Is- sues, 19:1–6,2019. [10] T. Otani, S. Kishi, and Y. Maruyama. Patterns of diabetic macular edema with optical coherence to- mography. American Journal of Ophthalmology, 127(6):688–693,1999. [11] Pro Visu Foundation. Fovea Centralis. https://www.provisu.ch/cgi/en/anatomical- structure.pl?en+alp+F+A09.371.729.522.436, 2018. [Online; accessed13-October-2019]. [12] P.J.RousseeuwandK.V.Driessen. Afastalgorithm for the minimum covariance determinant estimator. Technometrics, 41(3):212–223,1999. [13] B. Scho¨lkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the sup- portofahigh-dimensionaldistribution. Neuralcom- putation, 13(7):1443–1471, 2001. [14] W. D. Strain, X. Cos, and C. Pru¨nte. Considerations for management of patients with diabetic macular edema: Optimizing treatment outcomes and min- imizing safety concerns through interdisciplinary collaboration. DiabetesResearchandClinicalPrac- tice, 126:1–9,2017. 164
zurĂĽck zum  Buch Joint Austrian Computer Vision and Robotics Workshop 2020"
Joint Austrian Computer Vision and Robotics Workshop 2020
Titel
Joint Austrian Computer Vision and Robotics Workshop 2020
Herausgeber
Graz University of Technology
Ort
Graz
Datum
2020
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-85125-752-6
Abmessungen
21.0 x 29.7 cm
Seiten
188
Kategorien
Informatik
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Joint Austrian Computer Vision and Robotics Workshop 2020