Seite - 30 - in Advances in Neuroimmunology
Bild der Seite - 30 -
Text der Seite - 30 -
BrainSci. 2016,6, 6
mediatorof thehypoxic response that isdegradedinanoxygen-dependentmanner.Undernormoxic
conditions,HIF-1αhasahalf-lifeofapproximately8mindue tohydroxylationbyprolylhydroxyl
domains (PHDs) [5]. ThesePHDsexist in threedifferent isoforms,PHD1,PHD2,andPHD3andall
requireoxygen, iron,ascorbateand2-oxoglutarate,aproductof theoxygendependentKrebcycle, to
hydroxylateHIF-1α. Underhypoxicconditions theKrebcycle is inhbited leading toareduction in
2-oxoglutarate,preventingthebindingofPHDstothetargetingprolinedomains[4,6].Duringhypoxia,
theHIF-1αprotein stabilizes allowing it to recruit transcriptional co-activators,whichareblocked
during normal conditions via factor inhibitingHIF (FIH) [7]. This complex then permits for the
transcriptionofhypoxia-relatedproteins throughbindingof thehypoxic responsiveelement (HRE).
HREbinding induces theexpressionofgenes, suchaserythropoietin,vascularendothelialgrowth
factorandinsulingrowthfactor. Theseallplayaneuroprotetiverole inresponse to thehypoxic insult.
These acute and chronic responses to hypoxia are clearlymanifestedduring ischemic events
in thebrain. Anexampleof one sucheventwith ahypoxic component is stroke,which is caused
by a reduction in bloodflowas a result of an obstruction or rupture of blood vesselswithin the
brainandmaycausebothacuteandchronicepisodesofhypoxia. This leads tocomplexpathological
changes takingplace,whichmayleadto tissuenecrosis throughincreased inflammationandoxygen
deprivation [8]. During an ischemic stroke the eventual restriction of oxygen in the braindue to
anobstructionleadstoacascadeofeventsincludinghypoxia, increasedexpressionofpro-inflammatory
cytokines like tumornecrosis factoralpha(TNF-α) andinterleukin-1beta (IL-1β), aswellas increased
releaseof theexcitatoryneurotransmitterglutamate [9]. In this reviewwewilldiscusshowhypoxia
andthereleaseofpro-inflammatorycytokinescaneffect synaptic transmissionandplasticity in the
centralnervoussystem(CNS).
2.HypoxiaandSynapticSignaling
SynaptictransmissionintheCNSrequiresapproximately30%to50%ofcerebraloxygen.Therefore
manyof thechanges intheCNSrelatedtoacutehypoxiastemfrommodificationsofsynapticexcitation
anddepression. Theresponsestohypoxia,whichoccurwithinseconds,most likelydonotinvolvearole
forHIF-1αstabilization.Additionally,uponre-oxygenationafterashortperiod, synaptic transmission
can recover to 100% inmanybrain regions [10]. This decrease in synaptic signalingduring acute
hypoxia is thought to protect some neurons during ischemic events. Adenosine is one ofmany
neurotransmitters,whichplaysavital role in theneuroprotectiveresponse tohypoxia [11].Adenosine
A1 receptors (A1Rs), inparticular,playapart inalteringneurotransmitter release [12]andhavewide
expression levels throughout theCNS[13]. This inhibitoryneuromodulationbyA1Rs is coupled to
inhibitoryGi orGo containingG-proteins [14].Activationof thereceptorstimulatesadenylylcyclase,
activatesinwardlyrectifyingK+channels, thusinhibitingCa2+channelsandactivationofphospholipase
C.This inhibits thereleaseofanumberofneurotransmitters includingglutamate,dopamine, serotonin
andacetylcholine thusmaking it theprimaryneuroprotective receptor. Adenosine forms through
the enzymatic catabolismof adenosine triphosphate (ATP) into adenosinemonophosphate (AMP),
whichthenisbrokendownbyecto’5nucelotidases intoadenosine(seeFigure1).Adenosinekinase is
mainlyresponsible for theremovalofadenosineviaphosphorylation toAMP[15]. Underhypoxic
conditionswhenthere isabuild-upofadenosine in theextracellularspace,hypoxia inducedfactors
suchasHIF-1αalsocausean increase in theecto’5nucelotidasesCD73,allowingforabreakdownof
extracellularATPintoadenosine [16,17].
It isnowknownthatduringhypoxia,HIF-1α inhibits theequilibrativenucleoside transporters
ent-1/2locatedonthemembranesofneuronsandgliapreventingadenosinereuptakeintotheneuronal
cell [18]. Extracellular adenosinebinds toA1Rs locatedonboth thepostsynaptic andpresynaptic
membranes. PostsynapticA1Ractivationinhibits theactivationofglutamatergicN-methyl-D-aspartate
receptors (NMDARs) and adenosine binding toA1Rs located presynaptically [14]. Inhibition of
neurotransmitter release canbe suppressedby the addition of anA1R selective inhibitor, such as
8-cyclopentyl-1,3-dipropylxanthine (DPCPX), suggestingthatadenosinebinding isnecessaryfor the
30
zurück zum
Buch Advances in Neuroimmunology"
Advances in Neuroimmunology
- Titel
- Advances in Neuroimmunology
- Autor
- Donna Gruol
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-571-7
- Abmessungen
- 17.0 x 24.0 cm
- Seiten
- 164
- Schlagwörter
- neuroimmune, cytokine, chemokine, glia cel, neuron, neurodevelopment, neuroimmune disorder, neurologic disease, psychiatric disease, neuronal injury
- Kategorie
- Medizin