Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Photovoltaic Materials and Electronic Devices
Seite - 80 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 80 - in Photovoltaic Materials and Electronic Devices

Bild der Seite - 80 -

Bild der Seite - 80 - in Photovoltaic Materials and Electronic Devices

Text der Seite - 80 -

R = 50. As R is further increased, nanocrystallites nucleate within the amorphous phase at decreasingly lower thicknesses as indicated by the aÑ(a+nc) transition thicknesses. Films nucleating crystallites and grown to sufficient thickness show the (a+nc)Ñnc transition with crystallites coalescing at similarly decreasing thickness with increasing R. The film at R = 60 nucleates crystallites at ~100 Å and coalescence occurs at ~380 Å. These transitions occur much sooner for R = 80 leading to nanocrystallite formation in the very beginning of the deposition, making it unsuitable foranoptimumn-type layer insingle junctiona-Si:Hdevices. The  growth  evolution  diagrams  of  n‐type,  intrinsic,  and  p‐type  Si:H  layers  in  the  n‐i‐p/BR/glass  configuration  are  depicted  in  Figure  6.  The  n‐type  Si:H  layers  are  prepared  at  T  =  200°C,  p  =  1.5  Torr,  P  =  0.032  W/cm2,  and  D  =  0.0125  as  a  function  of  R  varied  from  20  to  80.  For  R  <  50  the  n‐layer  remains  amorphous  at  least  to  a  thickness  of  500  Å.  At  R  =  50  nanocrystallites  nucleate  in  the  n‐type  Si:H  at  about  450  Å  of  bulk  layer  thickness.  The  amorphous  material  prior  to  the  a (a+nc)  transition  of  these  depositions  is  protocrystalline  [2].  A  ~200  Å  thick  n‐layer  is  typical  for  n‐i‐p  configuration  devices,  and  the  best  R  for  optimized  n‐i‐p  a‐Si:H  solar  cells  with  a  protocrystalline  n‐layer  is  identified  here  as  near  R  =  50.  As  R  is  further  increased,  nanocrystallites  nucleate  within  the  amorphous  phase  at  decreasingly  lower  thi knesses  as  ind cated  by  the  a (a+nc)  transition  thicknesses.  Films  nucleating  crystallites  a d  grown  to  sufficient  thickness  show  the  (a+nc) nc  transition  with  crystallites  coalescing  at  similarly  decreasing  thickness  with  increasing  R.  The  film  at  R  =  60  nucleates  crystallites  at  ~100  Å  and  coalescence  occurs  at  ~380  Å.  These  transitions  occur  much  sooner  for  R  =  80  leading  to  nanocrystallite  formation  in  the  very  beginning  of  the  deposition,  making  it  unsuitable  for  an  optimum  n‐type  layer  in  single  junction  a‐Si:H  devices. (a)    (b)    (c)  Figure  6.  Growth  evolution  diagrams  obtained  from  analysis  of  RTSE  data  for  (a)  p‐type;  (b)  intrinsic;  and  (c)  n‐type  Si:H  as  a  function  of  variable  hydrogen  dilution  R  =  [H2]/[SiH4]  in  the  n‐i‐p  solar  cell  device  structure.  The  data  values  and  connecting  lines  depict  the  a (a+nc)  and  (a+nc) nc  structural  transitions  of  doped  and  undoped  Si:H  prepared  at  conditions  described  in  Table  1.  Arrows  pointing  upward  indicate  the  respective  transition  occurs  beyond  the  maximum  thickness  measured.  In  both  n‐i‐p  substrate  and  the  p‐i‐n  superstrate  PV  device  configurations,  most  incident  photons  are  absorbed  in  the  intrinsic  layer  with  photo‐generated  electrons  and  holes  transported  to  the  contacts.  Hence,  optimization  of  i‐layer  is  critical  and  the  optical  response  and  phase  composition  of  these  intrinsic  layers  tremendously  impact  solar  cell  performance.  The  intrinsic  Si:H  Figure 6. Growth evolution diagrams obtained from analysis of RTSE data for (a) p-type; (b) intrinsic; and (c) n-type Si:H as a function of variable hydrogen dilution R = [H2]/[SiH4] in the n-i-p solar cell device structure. The data values and connecting lin s d pict the aÑ(a+nc) and (a+nc)Ñnc structural transitions ofdopedandundopedSi:HpreparedatconditionsdescribedinTable1. Arrows pointing upward indicate the respective transition occurs beyond the maximum thicknessmeasured. 80
zurück zum  Buch Photovoltaic Materials and Electronic Devices"
Photovoltaic Materials and Electronic Devices
Titel
Photovoltaic Materials and Electronic Devices
Autor
Joshua M. Pearce
Herausgeber
MDPI
Ort
Basel
Datum
2016
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-217-4
Abmessungen
17.0 x 24.4 cm
Seiten
216
Schlagwörter
Perovskite, Plasmonics, Nanostructured Materials, Anti-Reflection Coatings, Transparent Conductive Oxides, Amorphous Silicon, Dye-sensitized Solar Cells (DSSCs) Materials, Organic Photovoltaic Materials, Solar Energy Materials
Kategorien
Naturwissenschaften Physik
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Photovoltaic Materials and Electronic Devices