Seite - 88 - in Photovoltaic Materials and Electronic Devices
Bild der Seite - 88 -
Text der Seite - 88 -
Figure10 showsspectra in Δ for the R =10 a-Si:Hintrinsic layer parameterized
usingaCody-LorentzoscillatorathighenergiesandGaussianoscillators torepresent
the IRvibrationalmodes. EachGaussianoscillator [72] isdescribedby:
Δ2pEqâAe ÂŽpEÂŽEn
Ï q 2
ÂŽAeÂŽp E`En
Ï q 2
(9)
Ïâ Î
2
a
lnp2q (10)
where A, Î, and En represent amplitude, broadening, and resonance energy
respectively,and Δ1 isgeneratedbyKramers-Kronigtransformationof Δ2 (Equation8).
Fit parameters are listed in Table 5. The Cody-Lorentz oscillator parameters for
intrinsic a-Si:H were linked to a single fit parameter, Eg from transmission and
reflection spectroscopy, by linear relationships previously determined for PV device
quality a-Si:H [71]. This technique minimizes the number of fit parameters allowing
for extraction of physically realistic Δ. Parameters describing spectra in Δ for the
underlying n-layer were extrapolated based on previously observed trends in the
Cody-Lorentzoscillatorparameterswith temperature [73].
where A is the amplitude, ï
 is the broadening, E0 is the resonance energy, Eg represents anÂ
absorption onset determined from a parabolic band constant dipole matrix element, and Ep + EgÂ
represents the transition between Cody gapâlike and Lorentzâlike behavior. AnalyticalÂ
KramersâKronigÂ
transformationÂ
ofÂ
Δ2Â
yieldsÂ
Δ1.Â
ParametersÂ
describingÂ
ΔÂ
forÂ
theÂ
nâlayerÂ
atÂ
theÂ
depositionÂ
temperatureÂ
TÂ
=Â
200Â
°CÂ
areÂ
AÂ
=Â
59Â
±Â
2Â
eV,Â
ï
Â
=Â
2.12Â
±Â
0.02Â
eV,Â
E0Â
=Â
3.99Â
±Â
0.01Â
eV,Â
EgÂ
=Â
1.58Â
±Â
0.04Â
eV,Â
andÂ
EpÂ
=Â
0.96Â
±Â
0.09Â
eV.Â
Figure 10 shows spectra in Δ for the R = 10 aâSi:H intrinsic layer parameterized using aÂ
Â
CodyâLorentz oscillator at high energies and Gaussian oscillators to represent the IR vibrationalÂ
modes. EachÂ
Gaussian oscillator [72] is described by:Â
2 2
2( ) E E E
En
n
E Ae Aeïł ïł
ï„ ï ï«
ïŠ ï¶ ïŠ ï¶
ï ï
ï§ ï· ï§ ï·
ï§ ï· ï§ ï·
ïš ïž ïš ïž
ïœ ï (9)
ïš ï©
2 ln
2ïœ
ï
ïł (10)
where A, ï
, and En represent amplitude, broadening, and resonance energy respectively, and Δ1 isÂ
generated by KramersâKronig transformation of Δ2 (Equation 8). Fit parameters are listed in Table 5.Â
The CodyâLorentz oscillator parameters for intrinsic aâSi:H were linked to a single fit parameter, EgÂ
fromÂ
transmissionÂ
andÂ
reflectionÂ
spectroscopy,Â
byÂ
linearÂ
relationshipsÂ
previouslyÂ
determinedÂ
forÂ
PVÂ
device quality aâSi:H [71]. This technique minimizes the number of fit parameters allowing forÂ
extractionÂ
ofÂ
physicallyÂ
realisticÂ
Δ.Â
ParametersÂ
describingÂ
spectraÂ
inÂ
ΔÂ
forÂ
theÂ
underlyingÂ
nâlayerÂ
wereÂ
extrapolated based on previously observed trends in the CodyâLorentz oscillator parameters withÂ
temperatureÂ
[73].Â
Â
Figure 10. Spectra in Δ (top panel, real part Δ1; bottom panel, imaginary part Δ2) extracted over aÂ
spectral range from 0.04 to 5 eV for 3621 ï±
 2 Ă
 R = 10 aâSi:H films on BR overâcoated with a R = 50Â
nâlayer. The inset shows lower energy features in Δ2 as a function of photon energy representingÂ
SiâHn vibrational modes as modeled by GaussianÂ
oscillators.Â
Figure 10. Spectra in Δ (top panel, real part Δ1; bottom panel, imaginary part Δ2)
extracted over a spectral range from 0.04 to 5 eV for 3621Ë2 Ă
R = 10 a-Si:H films
onBR over-coatedwith a R = 50n-layer. The inset showslower energyfeatures in
Δ2 as a function of photon energy representing Si-Hn vibrational modes as modeled
byGaussianoscillators.
IRvibrationalstudiesofa-Si:Hhavebeenuseful inunderstandingtheroleof
Si-H bonding in determining a-Si:H properties. High mobility and reactivity of
88
Photovoltaic Materials and Electronic Devices
- Titel
- Photovoltaic Materials and Electronic Devices
- Autor
- Joshua M. Pearce
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-217-4
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- Perovskite, Plasmonics, Nanostructured Materials, Anti-Reflection Coatings, Transparent Conductive Oxides, Amorphous Silicon, Dye-sensitized Solar Cells (DSSCs) Materials, Organic Photovoltaic Materials, Solar Energy Materials
- Kategorien
- Naturwissenschaften Physik
- Technik