Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Photovoltaic Materials and Electronic Devices
Seite - 88 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 88 - in Photovoltaic Materials and Electronic Devices

Bild der Seite - 88 -

Bild der Seite - 88 - in Photovoltaic Materials and Electronic Devices

Text der Seite - 88 -

Figure10 showsspectra in Δ for the R =10 a-Si:Hintrinsic layer parameterized usingaCody-LorentzoscillatorathighenergiesandGaussianoscillators torepresent the IRvibrationalmodes. EachGaussianoscillator [72] isdescribedby: Δ2pEq“Ae ÂŽpEÂŽEn σ q 2 ÂŽAeÂŽp E`En σ q 2 (9) σ“ Γ 2 a lnp2q (10) where A, Γ, and En represent amplitude, broadening, and resonance energy respectively,and Δ1 isgeneratedbyKramers-Kronigtransformationof Δ2 (Equation8). Fit parameters are listed in Table 5. The Cody-Lorentz oscillator parameters for intrinsic a-Si:H were linked to a single fit parameter, Eg from transmission and reflection spectroscopy, by linear relationships previously determined for PV device quality a-Si:H [71]. This technique minimizes the number of fit parameters allowing for extraction of physically realistic Δ. Parameters describing spectra in Δ for the underlying n-layer were extrapolated based on previously observed trends in the Cody-Lorentzoscillatorparameterswith temperature [73]. where  A  is  the  amplitude,     is  the  broadening,  E0  is  the  resonance  energy,  Eg  represents  an  absorption  onset  determined  from  a  parabolic  band  constant  dipole  matrix  element,  and  Ep  +  Eg  represents  the  transition  between  Cody  gap‐like  and  Lorentz‐like  behavior.  Analytical  Kramers‐Kronig  transformation  of  Δ2  yields  Δ1.  Parameters  describing  Δ  for  the  n‐layer  at  the  deposition  temperature  T  =  200  °C  are  A  =  59  ±  2  eV,     =  2.12  ±  0.02  eV,  E0  =  3.99  ±  0.01  eV,  Eg  =  1.58  ±  0.04  eV,  and  Ep  =  0.96  ±  0.09  eV.  Figure  10  shows  spectra  in  Δ  for  the  R  =  10  a‐Si:H  intrinsic  layer  parameterized  using  a    Cody‐Lorentz  oscillator  at  high  energies  and  Gaussian  oscillators  to  represent  the  IR  vibrational  modes.  Each  Gaussian  oscillator  [72]  is  described  by:  2 2 2( ) E E E En n E Ae Aeïł ïł                        (9)   2 ln 2  ïł (10) where  A,   ,  and  En  represent  amplitude,  broadening,  and  resonance  energy  respectively,  and  Δ1  is  generated  by  Kramers‐Kronig  transformation  of  Δ2  (Equation  8).  Fit  parameters  are  listed  in  Table  5.  The  Cody‐Lorentz  oscillator  parameters  for  intrinsic  a‐Si:H  were  linked  to  a  single  fit  parameter,  Eg  from  transmission  and  reflection  spectroscopy,  by  linear  relationships  previously  determined  for  PV  device  quality  a‐Si:H  [71].  This  technique  minimizes  the  number  of  fit  parameters  allowing  for  extraction  of  physically  realistic  Δ.  Parameters  describing  spectra  in  Δ  for  the  underlying  n‐layer  were  extrapolated  based  on  previously  observed  trends  in  the  Cody‐Lorentz  oscillator  parameters  with  temperature  [73].    Figure  10.  Spectra  in  Δ  (top  panel,  real  part  Δ1;  bottom  panel,  imaginary  part  Δ2)  extracted  over  a  spectral  range  from  0.04  to  5  eV  for  3621     2  Å  R  =  10  a‐Si:H  films  on  BR  over‐coated  with  a  R  =  50  n‐layer.  The  inset  shows  lower  energy  features  in  Δ2  as  a  function  of  photon  energy  representing  Si‐Hn  vibrational  modes  as  modeled  by  Gaussian  oscillators.  Figure 10. Spectra in Δ (top panel, real part Δ1; bottom panel, imaginary part Δ2) extracted over a spectral range from 0.04 to 5 eV for 3621˘2 Å R = 10 a-Si:H films onBR over-coatedwith a R = 50n-layer. The inset showslower energyfeatures in Δ2 as a function of photon energy representing Si-Hn vibrational modes as modeled byGaussianoscillators. IRvibrationalstudiesofa-Si:Hhavebeenuseful inunderstandingtheroleof Si-H bonding in determining a-Si:H properties. High mobility and reactivity of 88
zurĂŒck zum  Buch Photovoltaic Materials and Electronic Devices"
Photovoltaic Materials and Electronic Devices
Titel
Photovoltaic Materials and Electronic Devices
Autor
Joshua M. Pearce
Herausgeber
MDPI
Ort
Basel
Datum
2016
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-217-4
Abmessungen
17.0 x 24.4 cm
Seiten
216
Schlagwörter
Perovskite, Plasmonics, Nanostructured Materials, Anti-Reflection Coatings, Transparent Conductive Oxides, Amorphous Silicon, Dye-sensitized Solar Cells (DSSCs) Materials, Organic Photovoltaic Materials, Solar Energy Materials
Kategorien
Naturwissenschaften Physik
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Photovoltaic Materials and Electronic Devices