Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Photovoltaic Materials and Electronic Devices
Seite - 124 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 124 - in Photovoltaic Materials and Electronic Devices

Bild der Seite - 124 -

Bild der Seite - 124 - in Photovoltaic Materials and Electronic Devices

Text der Seite - 124 -

compensate for this tosomeextent,butnevertheless,Figure11 indicates that fora competitiveperformanceoffingergridsandmetallic interconnectover theclassic TCOinterconnect, theRscr shouldbeat least0.02Ωcm2.Materials  2016,  9,  96  Figure  11.  Efficiency  as  a  function  of  the  cell  length  for  various  specific  contact  resistances    (see  legend,  Rscr,  in  Ω  cm2),  and  TCO  (without  contact  resistance)  for  cells  with  finger  grid  width  of    20  μm  (a,c,e)  and  60  μm  (b,d,f)  and  a  height  of  2  μm  (a,b),  5  μm  (c,d)  and  50  μm  (e,f).  Calculations  were  based  on  a  19%  small  cell.  The  effect  of  the  Rscr  is  smaller  for  wider  grids.  This  can  be  explained  by  the  larger  contact  area  between  the  metal  and  the  finger.  As  a  result,  for  an  Rscr  of  0.02  Ohm  cm2  there  is  little  difference  in  efficiency  between  the  20  μm  and  the  60  μm  grid  widths.  The  benefit  of  the  lower  shadow  of  the  narrower  grid  finger  is  compensated  by  the  higher  contact  resistance  loss.  This  is  independent  of  the  grid  height.  Obviously,  for  higher  grid  fingers,  the  range  of  the  applicable  cell  length  increases,  but  the  impact  of  the  Rscr  is  similar.  A  longer  cell  increases  both  the  contact  area  and  the  generated  current  and  these  two  factors  counterbalance  each  other.  In  contrast,  Figure  10  shows  an  increased  impact  of  Rscr  with  cell  length,  as  in  this  case,  the  longer  cell  length  increases  the  current  density,  but  the  TCO  metal  contact  area  (busbar  only)  remains  the  same.  For  all  cells  with  a  metallic  interconnect,  the  cells  with  a  metallic  grid  show  a  higher  cell  efficiency  (Figure  11)  compared  to  the  cells  with  only  a  TCO  as  the  front  contact  for  similar  Rscr  (Figure  10).  2.6.  Influence  of  Illumination  Power  Solar  panels  and  solar  cells  are  tested  and  certified  at  an  illumination  power  of  1000  W/m2  (also  denoted  as  one  sun).  Therefore,  the  panel  configuration  is  usually  optimized  for  this  high  intensity.  However,  in  northwest  Europe,  this  high  power  is  seldom  reached.  In  real  life,  much  of  the  power  generated  by  solar  panels  is  actually  around  an  illumination  power  of  500  W/m2.  For  cells  without  a  metallic  grid,  the  influence  of  the  illumination  power  was  investigated  with  variation  of  the  cell  length,  as  shown  in  Figure  12a.  Seemingly,  as  the  illumination  power  decreases,  the  impact  of  the  Figure 11. Efficiency as a function of the cell length for various specific contact resistances (see legend,Rscr, inΩcm2), andTCO(withoutcontact resistance) for c lls with finger grid width of 20µm (a,c,e) and 60µm (b,d,f) and a height of 2µm (a,b), 5µm(c,d) and50µm(e,f). Calculationswerebasedona19%small cell. The effect of the Rscr is smaller for wider grids. This can be explained by the la ger contact area between the metal and the finger. As a result, for a Rscr of 0.02 O m cm2 there is little difference in efficiency between the 20 µm and the 60µmgridwidths. Thebenefitof the lowershadowof thenarrowergridfinger is compensatedbythehighercontact resistance loss. This is independentof thegrid height. Obviously, for higher grid fingers, the range of the applicable cell length increases,but the impactof theRscr is similar. Alongercell increasesboththecontact areaandthegeneratedcurrentandthese twofactorscounterbal nceeachother. 124
zurück zum  Buch Photovoltaic Materials and Electronic Devices"
Photovoltaic Materials and Electronic Devices
Titel
Photovoltaic Materials and Electronic Devices
Autor
Joshua M. Pearce
Herausgeber
MDPI
Ort
Basel
Datum
2016
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-217-4
Abmessungen
17.0 x 24.4 cm
Seiten
216
Schlagwörter
Perovskite, Plasmonics, Nanostructured Materials, Anti-Reflection Coatings, Transparent Conductive Oxides, Amorphous Silicon, Dye-sensitized Solar Cells (DSSCs) Materials, Organic Photovoltaic Materials, Solar Energy Materials
Kategorien
Naturwissenschaften Physik
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Photovoltaic Materials and Electronic Devices