Seite - 188 - in Photovoltaic Materials and Electronic Devices
Bild der Seite - 188 -
Text der Seite - 188 -
deposited by MBE on nanostructured Si substrate for solar cell applications. The
resultsmayopenupnewperspectivesonthedevelopmentoflowcost,highefficiency
III-V-basedsolarcellsonSi substrate.
2. ResultsandDiscussion
2.1.GrowthProcess
InAs/GaAs QDs with In0.13Ga0.87As strain reducing layer were incorporated
within the intrinsic regionofapin-GaAs/n+-SiusingStranski-Kranstanowgrowth
mode by molecular beam epitaxy. The use of InGaAs as a strain reducing layer
is believed both to reduce the compressive stress acting on the InAs QDs by the
GaAsmatrix,andtoreduce indiumout-diffusionfromtheInAsQDs[22–24]. The
choice of relatively low indium composition is expected to avoid excessive In-Ga
phase separation that alters the optical and structural properties of the InAs QDs
and the surrounding material [25]. The number of absorbed photons is proportional
to the number of effective QDs in the solar cell active region. For the InAs/GaAs
system, theQDs’aerialdensity inasingle layer isaround1010 dots/cm2 onGaAs
substrate[26]. Suchavalueistoosmalltoaccountfortheimprovementofthespectral
response. Increasing the effective number of QDs is possible by vertical stacking
of QD layers. However, the total number of vertically stacked layers is limited by
the onset required for the relaxation of the accumulated strain by generation of
stacking faults and dislocations. In the present study, we have employed 40 QD
layersensuringacompromisebetweenthe increaseof theeffectivenumberofQDs
and the overall sample’s structural properties. The pin diode structure has been
directly fabricatedonnanostructuredn+-Si substrate.
Thepreparationof thenanostructuredn+-typesilicon’ssubstratesurfacehas
beenperformedatroomtemperaturebythe formationandsubsequentdissolution
ofaporous layer. Theelectrolyteusedto fabricatea5µm-thickporoussilicon layer
consistsofamixtureofhydrofluoricacidHF([HF]=36%)andethanol (HF:C2H5OH)
inavolumetricproportionof1:1. Theporous layerwas formedbyanodizingtheSi
substrate in this electrolyteunder acurrent density of3 mA¨cm´2. The samplewas
thenetchedinNaOHsolutiontobreakuptheporoussilicon layerandproduce the
structuration of the surface. Indeed, after the chemical dissolution of silicon skeleton,
theruggedsurfacewillbeexposedtobeamepitaxy. Additionaldetailsconcerning
theprocessaswellas themorphologicalpropertiesof thenanostructuredSisurface
andits impactonthequalityofGaAsmaterialgrownonsuchSisurfacecanbefound
elsewhere [27].
After surface preparation, a cleaning and out gassing process of the silicon
substratewasperformed undervacuumcondition inan introductory chamberwith
a rest pressure of 10´9 Torr at high temperature (760˝C), to remove the native oxide
188
Photovoltaic Materials and Electronic Devices
- Titel
- Photovoltaic Materials and Electronic Devices
- Autor
- Joshua M. Pearce
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-217-4
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- Perovskite, Plasmonics, Nanostructured Materials, Anti-Reflection Coatings, Transparent Conductive Oxides, Amorphous Silicon, Dye-sensitized Solar Cells (DSSCs) Materials, Organic Photovoltaic Materials, Solar Energy Materials
- Kategorien
- Naturwissenschaften Physik
- Technik