Seite - 91 - in Proceedings of the OAGM&ARW Joint Workshop - Vision, Automation and Robotics
Bild der Seite - 91 -
Text der Seite - 91 -
non-rigid ICP [2] as an option to further improve the
pose estimation.
• The preparation of an extensive annotated dataset will
lead to an objective evaluation of our approach with
various parameters and settings and a comparison to
state of the art methods.
• Here, we assumed a correct segmentation result. In
future we need to investigate optimal segmentation
methods for real world experiments.
ACKNOWLEDGMENT
The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement No. 600623,
STRANDS and industrial funding from OMRON Corpora-
tion in Japan
REFERENCES
[1] A. Aldoma, F. Tombari, L. Di Stefano, and M. Vincze, “A global
hypothesis verification framework for 3d object recognition in clutter,”
IEEE transactions on pattern analysis and machine intelligence,
vol. 38, no. 7, pp. 1383–1396, 2016.
[2] B. Amberg, S. Romdhani, and T. Vetter, “Optimal step nonrigid icp
algorithms for surface registration,” in Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on. IEEE, 2007, pp.
1–8.
[3] F. M. Carlucci, P. Russo, and B. Caputo, “A deep representation for
depth images from synthetic data,” arXiv preprint arXiv:1609.09713,
2016.
[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on. IEEE, 2009, pp. 248–255.
[5] A. Doumanoglou, V. Balntas, R. Kouskouridas, and T.-K. Kim,
“Siamese regression networks with efficient mid-level feature extrac-
tion for 3d object pose estimation,” arXiv preprint arXiv:1607.02257,
2016.
[6] A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Bur-
gard, “Multimodal deep learning for robust rgb-d object recognition,”
in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ Interna-
tional Conference on. IEEE, 2015, pp. 681–687.
[7] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
journal of computer vision, vol. 88, no. 2, pp. 303–338, 2010.
[8] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction
by learning an invariant mapping,” in Computer vision and pattern
recognition,2006IEEEcomputer societyconferenceon, vol. 2. IEEE,
2006, pp. 1735–1742.
[9] S.Hinterstoisser,V.Lepetit,S. Ilic,S.Holzer,G.Bradski,K.Konolige,
and N. Navab, “Model based training, detection and pose estimation of
texture-less3dobjects inheavilyclutteredscenes,” inAsianconference
on computer vision. Springer, 2012, pp. 548–562.
[10] T. Hodan, P. Haluza, S. Obdrzalek, J. Matas, M. Lourakis, and
X. Zabulis, “T-less: An rgb-d dataset for 6d pose estimation of texture-
less objects,” arXiv preprint arXiv:1701.05498, 2017.
[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast featureembedding,” inProceedingsof the22ndACMinternational
conference on Multimedia. ACM, 2014, pp. 675–678.
[12] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional
network for real-time 6-dof camera relocalization,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp.
2938–2946.
[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.
[14] E. Mun˜oz, Y. Konishi, V. Murino, and A. Del Bue, “Fast 6d pose
estimation for texture-less objects from a single rgb image,” in
RoboticsandAutomation(ICRA),2016IEEEInternationalConference
on. IEEE, 2016, pp. 5623–5630. [15] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.
[16] M. Schwarz, H. Schulz, and S. Behnke, “Rgb-d object recognition and
poseestimationbasedonpre-trainedconvolutional neural network fea-
tures,” in Robotics and Automation (ICRA), 2015 IEEE International
Conference on. IEEE, 2015, pp. 1329–1335.
[17] F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of
histograms for local surface description,” in European Conference on
Computer Vision. Springer, 2010, pp. 356–369.
[18] P. Wohlhart and V. Lepetit, “Learning descriptors for object recogni-
tion and 3d pose estimation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 3109–3118.
[19] W. Wohlkinger and M. Vincze, “Ensemble of shape functions for
3d object classification,” in 2011 IEEE International Conference on
Robotics and Biomimetics, Dec 2011, pp. 2987–2992.
91
Proceedings of the OAGM&ARW Joint Workshop
Vision, Automation and Robotics
- Titel
- Proceedings of the OAGM&ARW Joint Workshop
- Untertitel
- Vision, Automation and Robotics
- Autoren
- Peter M. Roth
- Markus Vincze
- Wilfried Kubinger
- Andreas MĂĽller
- Bernhard Blaschitz
- Svorad Stolc
- Verlag
- Verlag der Technischen Universität Graz
- Ort
- Wien
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-85125-524-9
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 188
- Schlagwörter
- Tagungsband
- Kategorien
- International
- Tagungsbände