Seite - 112 - in Proceedings of the OAGM&ARW Joint Workshop - Vision, Automation and Robotics
Bild der Seite - 112 -
Text der Seite - 112 -
ACKNOWLEDGEMENTS
This work has been funded by the Austrian security
research programme KIRAS of the Federal Ministry for
Transport, Innovation and Technology (bmvit) under Grant
850193. We would like to thank the forensic experts of the
Criminal Intelligence Service Austria and the LKA Wien
(AB08 KPU) for their help. The Titan X used for this
research was donated by the NVIDIA Corporation.
REFERENCES
[1] M. Baiker, I. Keereweer, R. Pieterman, E. Vermeij, J. van der Weerd,
and P. Zoon, “Quantitative comparison of striated toolmarks,”Forensic
Science International, vol. 242, pp. 186–199, 2014.
[2] V. Balntas, E. Johns, L. Tang, and K. Mikolajczyk, “PN-Net: Conjoined
Triple Deep Network for Learning Local Image Descriptors,” ArXiv,
2016.
[3] M. Keglevic and R. Sablatnig, “Learning a Similarity Measure for Stri-
ated Toolmarks using Convolutional Neural Networks,” inProceedings
of the7th IETInternationalConferenceonImaging forCrimeDetection
and Prevention (ICDP), 2016.
[4] O.M.Parkhi,A.Vedaldi, andA.Zisserman,“Deepface recognition,” in
Proceedings of the BritishMachine Vision Conference (BMVC), 2015.
[5] R. Spotts, L. S. Chumbley, L. Ekstrand, S. Zhang, and J. Kreiser,
“Optimization of a Statistical Algorithm for Objective Comparison of
Toolmarks,” Journal of Forensic Sciences, vol. 60, no. 2, pp. 303–314,
2015.
112
Proceedings of the OAGM&ARW Joint Workshop
Vision, Automation and Robotics
- Titel
- Proceedings of the OAGM&ARW Joint Workshop
- Untertitel
- Vision, Automation and Robotics
- Autoren
- Peter M. Roth
- Markus Vincze
- Wilfried Kubinger
- Andreas Müller
- Bernhard Blaschitz
- Svorad Stolc
- Verlag
- Verlag der Technischen Universität Graz
- Ort
- Wien
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-85125-524-9
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 188
- Schlagwörter
- Tagungsband
- Kategorien
- International
- Tagungsbände