Seite - 150 - in Proceedings of the OAGM&ARW Joint Workshop - Vision, Automation and Robotics
Bild der Seite - 150 -
Text der Seite - 150 -
80
82
84
86
88
90
92
94
96
98
100
0.1 1 10 100
FAR [%] U-net FCNN
MINDTCT
Verifinger
(a) Using only Anguli generated data. 80
82
84
86
88
90
92
94
96
98
100
0.1 1 10 100
FAR [%] U-net FCNN
MINDTCT
Verifinger
(b) Using Augmentations 80
82
84
86
88
90
92
94
96
98
100
0.1 1 10 100
FAR [%] U-net FCNN
MINDTCT
Verifinger
(c) Using Augmentations and Refinements.
Fig. 7. Equal Error Rate Comparison on FVC2000 [15] DB 1 using synthetic, augmentated or refined data.
80
82
84
86
88
90
92
94
96
98
100
0.1 1 10 100
FAR [%] U-net FCNN
MINDTCT
Verifinger
(a) Using only Anguli generated data. 80
82
84
86
88
90
92
94
96
98
100
0.1 1 10 100
FAR [%] U-net FCNN
MINDTCT
Verifinger
(b) Using Augmentations 80
82
84
86
88
90
92
94
96
98
100
0.1 1 10 100
FAR [%] U-net FCNN
MINDTCT
Verifinger
(c) Using Augmentations and Refinements.
Fig. 8. Equal Error Rate Comparison on FVC2000 [15] DB 3 using synthetic, augmentated or refined data.
Fig. 9. Model comparision between Dense Blocks, Wide Residual Blocks
and Bottleneck Residual Blocks.
MINDTCT on real datasets. Also we report clear perfor-
mance improvements by using a refinement network. Addi-
tionally it is also the fastest method, when run on a GPU.
D. Sample Results for Refinement Network
The only quality metric to our knowledge for GANs is
the inception score [20], which is not applicable for our use
case. Therefore, this section shows the visual result of the
refinement network. In Fig. 10 we can see a comparison of
using self regularized MSE versus the Hessian regularized
version of the network. In the Hessian regularized examples
the ridge pattern is better preserved and less artifacts are
introduced into the refined fingerprint.
E. Sample Results for Various Fingers
Anillustrationonwhichminutiaeare foundusingdifferent
training data is given in Fig. 11. Here, by training solely on TABLE I
EQUAL ERROR RATE AND ENROLLMENT SPEED FOR FVC2000 [15]
DATABASES
Algorithm DB 1 DB 3 Time in sec.
Synth. Unet FCNN 21.80% 32.75% 0.12 on gpu
Augm. Unet FCNN 7.01% 16.63% 0.12 on gpu
Ref. Unet FCNN 5.99% 9.42% 0.12 on gpu
MINDTCT [25] 6.63% 12.11% 0.14 on cpu
Verifinger [24] 3.28% 6.31% 1.08 on cpu
(a) Self regularized
GAN Output (b) Hessian regular-
ized GAN Output. (c) Hessian regular-
ized GAN Output.
Fig. 10. Sample refiner network output images for self regularized and
Hessian regularized training based on the GAN approach.
synthetic fingerprints the minutiae map is clearly wrong as
shown in Fig. 11. The network trained on augmented data
outputs a subset of the correct minutiae. In contrast, the
network trained on GAN data outputs a reasonable minutiae
map for this example.
An example of a clear mismatch between two images of
the same fingerprint can be seen in Fig. 12. Even though
the matching score is 0%, overlapping minutiae are found.
However, the orientation does not match because of the noise
in the fingerprint.
150
Proceedings of the OAGM&ARW Joint Workshop
Vision, Automation and Robotics
- Titel
- Proceedings of the OAGM&ARW Joint Workshop
- Untertitel
- Vision, Automation and Robotics
- Autoren
- Peter M. Roth
- Markus Vincze
- Wilfried Kubinger
- Andreas Müller
- Bernhard Blaschitz
- Svorad Stolc
- Verlag
- Verlag der Technischen Universität Graz
- Ort
- Wien
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-85125-524-9
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 188
- Schlagwörter
- Tagungsband
- Kategorien
- International
- Tagungsbände