Seite - XVI - in Programming for Computations – Python - A Gentle Introduction to Numerical Simulations with Python
Bild der Seite - XVI -
Text der Seite - XVI -
xvi ListofExercises
Exercise3.6: Explore roundingerrorswith largenumbers . . . . . . . . . . . . 89
Exercise3.7:Write test functions for R4
0 p
xdx . . . . . . . . . . . . . . . . . . . 89
Exercise3.8: Rectanglemethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Exercise3.9:Adaptive integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Exercise3.10: Integratingx raised tox . . . . . . . . . . . . . . . . . . . . . . . . 90
Exercise3.11: Integrateproductsof sine functions . . . . . . . . . . . . . . . . . 91
Exercise3.12:Revisitfit of sines toa function . . . . . . . . . . . . . . . . . . . 91
Exercise3.13:Derive the trapezoidal rule foradouble integral . . . . . . . . . 92
Exercise3.14:Compute theareaofa trianglebyMonteCarlo integration . . . 92
Exercise4.1:Geometricconstructionof theForwardEulermethod . . . . . . . 153
Exercise4.2:Make test functions for theForwardEulermethod . . . . . . . . 153
Exercise4.3: ImplementandevaluateHeun’smethod . . . . . . . . . . . . . . . 153
Exercise4.4: Findanappropriate timestep; logisticmodel . . . . . . . . . . . . 154
Exercise4.5: Findanappropriate timestep;SIRmodel . . . . . . . . . . . . . . 154
Exercise4.6:Modelanadaptivevaccinationcampaign . . . . . . . . . . . . . . 154
Exercise4.7:MakeaSIRVmodelwith time-limitedeffectofvaccination . . . 154
Exercise4.8: Refactoraflat program . . . . . . . . . . . . . . . . . . . . . . . . . 155
Exercise4.9: SimulateoscillationsbyageneralODEsolver . . . . . . . . . . . 155
Exercise4.10:Compute theenergy inoscillations . . . . . . . . . . . . . . . . . 155
Exercise4.11:UseaBackwardEuler schemeforpopulationgrowth . . . . . . 156
Exercise4.12:UseaCrank-Nicolsonschemeforpopulationgrowth . . . . . . 156
Exercise4.13:UnderstandfinitedifferencesviaTaylor series . . . . . . . . . . 157
Exercise4.14:UseaBackwardEuler schemeforoscillations . . . . . . . . . . 158
Exercise4.15:UseHeun’smethodfor theSIRmodel . . . . . . . . . . . . . . . 159
Exercise4.16:UseOdespy to solveasimpleODE . . . . . . . . . . . . . . . . . 159
Exercise4.17: Set upaBackwardEuler schemeforoscillations . . . . . . . . . 159
Exercise 4.18: Set up a ForwardEuler scheme for nonlinear and damped
oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Exercise4.19:Discretize an initial condition. . . . . . . . . . . . . . . . . . . . . 160
Exercise5.1: Simulateadiffusionequationbyhand . . . . . . . . . . . . . . . . 177
Exercise5.2: Compute temperaturevariations in theground . . . . . . . . . . . 178
Exercise5.3: Compare implicitmethods . . . . . . . . . . . . . . . . . . . . . . . 178
Exercise5.4: Exploreadaptiveand implicitmethods . . . . . . . . . . . . . . . . 179
Exercise5.5: Investigate the rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Exercise5.6: Compute thediffusionofaGaussianpeak . . . . . . . . . . . . . . 180
Exercise5.7:Vectorizea function forcomputing theareaof apolygon . . . . 181
Exercise5.8: Exploresymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Exercise5.9: Computesolutionsas t !1 . . . . . . . . . . . . . . . . . . . . . 182
Exercise5.10: Solvea two-pointboundaryvalueproblem . . . . . . . . . . . . 183
Exercise6.1:UnderstandwhyNewton’smethodcan fail . . . . . . . . . . . . . 206
Exercise6.2: See if the secantmethodfails . . . . . . . . . . . . . . . . . . . . . 207
Exercise6.3:Understandwhy thebisectionmethodcannot fail . . . . . . . . . 207
Exercise6.4: Combine thebisectionmethodwithNewton’smethod . . . . . . 207
Exercise6.5:Writea test functionforNewton’smethod . . . . . . . . . . . . . 207
Exercise6.6: Solvenonlinearequation foravibratingbeam . . . . . . . . . . . 207
Programming for Computations – Python
A Gentle Introduction to Numerical Simulations with Python
- Titel
- Programming for Computations – Python
- Untertitel
- A Gentle Introduction to Numerical Simulations with Python
- Autoren
- Svein Linge
- Hans Petter Langtangen
- Verlag
- Springer Open
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY-NC 4.0
- ISBN
- 978-3-319-32428-9
- Abmessungen
- 17.8 x 25.4 cm
- Seiten
- 248
- Schlagwörter
- Programmiersprache, Informatik, programming language, functional, imperative, object-oriented, reflective
- Kategorie
- Informatik