Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Programming for Computations – Python - A Gentle Introduction to Numerical Simulations with Python
Seite - 36 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 36 - in Programming for Computations – Python - A Gentle Introduction to Numerical Simulations with Python

Bild der Seite - 36 -

Bild der Seite - 36 - in Programming for Computations – Python - A Gentle Introduction to Numerical Simulations with Python

Text der Seite - 36 -

36 2 BasicConstructions When run, this program first prints the sum of x and y (i.e., 5), and then it prints theproduct (i.e., 6).Wesee thattreat_xy takes a functionnameas itsfirst parameter. Insidetreat_xy, that function isused to actually call the function that was given as input parameter. Therefore, as shown, wemay call treat_xywith eithersum_xyorprod_xy,dependingonwhetherwewant thesumorproductofx andy tobecalculated. Functionsmayalsobedefinedwithinother functions. It that case, theybecome local functions, or nested functions, knownonly to the function insidewhich they aredefined. Functionsdefined inmainare referred toasglobal functions. Anested functionhasfullaccess toallvariablesintheparentfunction, i.e. thefunctionwithin which it is defined. Short functions can be defined in a compact way, using what is known as a lambdafunction: f = lambda x, y: x + 2*y # Equivalent def f(x, y): return x + 2*y Thesyntaxconsists oflambda followedbya seriesof arguments, colon, andsome Pythonexpression resulting in anobject to be returned fromthe function. Lambda functionsareparticularlyconvenientas functionarguments: print treat_xy(lambda x, y: x*y, x, y) Overheadoffunctioncalls Function calls have the downside of slowing down program execution. Usu- ally, it is a good thing to split a program into functions, but in very computing intensiveparts, e.g., inside longloops,onemustbalancetheconvenienceofcall- ing a function and the computational efficiencyof avoiding function calls. It is a good rule to develop a programusing plenty of functions and then in a later optimization stage, when everything computes correctly, remove function calls that arequantified to slowdownthecode. Here isa littleexampleinIPythonwherewecalculate theCPUtimefordoing arraycomputationswithandwithoutahelper function: In [1]: import numpy as np In [2]: a = np.zeros(1000000) In [3]: def add(a, b): ...: return a + b ...: In [4]: %timeit for i in range(len(a)): a[i] = add(i, i+1) The slowest run took 16.01 times longer than the fastest. This could mean that an intermediate result is being cached 1 loops, best of 3: 178 ms per loop In [5]: %timeit for i in range(len(a)): a[i] = i + (i+1) 10 loops, best of 3: 109 ms per loop
zurück zum  Buch Programming for Computations – Python - A Gentle Introduction to Numerical Simulations with Python"
Programming for Computations – Python A Gentle Introduction to Numerical Simulations with Python
Titel
Programming for Computations – Python
Untertitel
A Gentle Introduction to Numerical Simulations with Python
Autoren
Svein Linge
Hans Petter Langtangen
Verlag
Springer Open
Datum
2016
Sprache
englisch
Lizenz
CC BY-NC 4.0
ISBN
978-3-319-32428-9
Abmessungen
17.8 x 25.4 cm
Seiten
248
Schlagwörter
Programmiersprache, Informatik, programming language, functional, imperative, object-oriented, reflective
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Programming for Computations – Python