Seite - (000006) - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - (000006) -
Text der Seite - (000006) -
Special IssueEditors
Wei-ChiangHong
JiangsuNormalUniversity
China Ming-WeiLi
HarbinEngineeringUniversity
China Guo-FengFan
PingdingshanUniversity
China
EditorialOffice
MDPI
St.Alban-Anlage66
4052Basel,Switzerland
This isareprintofarticles fromtheSpecial Issuepublishedonline in theopenaccess journalEnergies
(ISSN1996-1073)from2018to2019(availableat: https://www.mdpi.com/journal/energies/special
issues/Short TermLoad Forecasting)
For citationpurposes, cite each article independently as indicatedon the article pageonline andas
indicatedbelow:
LastName, A.A.; LastName, B.B.; LastName, C.C.Article Title. Journal Name Year,Article Number,
PageRange.
ISBN978-3-03897-582-3 (Pbk)
ISBN978-3-03897-583-0 (PDF)
c© 2019 by the authors. Articles in this book areOpenAccess and distributed under theCreative
Commons Attribution (CC BY) license, which allows users to download, copy and build upon
publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum
disseminationandawider impactofourpublications.
ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons
licenseCCBY-NC-ND.
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik