Seite - VI - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - VI -
Text der Seite - VI -
JingZhao,YaoqiDuanandXiaojuanLiu
Uncertainty Analysis of Weather Forecast Data for Cooling Load Forecasting Based on the
MonteCarloMethod
Reprintedfrom:Energies2018,11, 1900,doi:10.3390/en11071900 . . . . . . . . . . . . . . . . . . . 211
BenjaminAuder, JairoCugliari,YannigGoude, Jean-MichelPoggi
ScalableClusteringof IndividualElectricalCurves forProfilingandBottom-UpForecasting
Reprintedfrom:Energies2018,11, 1893,doi:10.3390/en11071893 . . . . . . . . . . . . . . . . . . . 229
MagnusDahl,AdamBrun,OliverS.KirsebomandGormB.Andresen
ImprovingShort-TermHeatLoadForecastswithCalendarandHolidayData
Reprintedfrom:Energies2018,11, 1678,doi:10.3390/en11071678 . . . . . . . . . . . . . . . . . . . 251
MerganiA.Khairalla,XuNing,NashatT.AL-JalladandMusaabO.El-Faroug
Short-TermForecasting for EnergyConsumption through StackingHeterogeneous Ensemble
LearningModel
Reprintedfrom:Energies2018,11, 1605,doi:10.3390/en11061605 . . . . . . . . . . . . . . . . . . . 267
JiyangWang,YuyangGaoandXuejunChen
A Novel Hybrid Interval Prediction Approach Based on Modified Lower Upper Bound
Estimation inCombinationwithMulti-Objective Salp SwarmAlgorithm for Short-TermLoad
Forecasting
Reprintedfrom:Energies2018,11, 1561,doi:10.3390/en11061561 . . . . . . . . . . . . . . . . . . . 288
XingZhang
Short-TermLoadForecastingforElectricBusChargingStationsBasedonFuzzyClusteringand
LeastSquaresSupportVectorMachineOptimizedbyWolfPackAlgorithm
Reprintedfrom:Energies2018,11, 1449,doi:10.3390/en11061449 . . . . . . . . . . . . . . . . . . . 318
WeiSunandChongchongZhang
AHybridBA-ELMModelBasedonFactorAnalysisandSimilar-DayApproachforShort-Term
LoadForecasting
Reprintedfrom:Energies2018,11, 1282,doi:10.3390/en11051282 . . . . . . . . . . . . . . . . . . . 336
YunyanLi,YuanshengHuangandMeimeiZhang
Short-TermLoadForecasting for Electric VehicleCharging StationBased onNiche Immunity
LionAlgorithmandConvolutionalNeuralNetwork
Reprintedfrom:Energies2018,11, 1253,doi:10.3390/en11051253 . . . . . . . . . . . . . . . . . . . 354
YixingWang,MeiqinLiu,ZhejingBaoandSenlinZhang
Short-Term Load Forecasting with Multi-Source Data Using Gated Recurrent Unit Neural
Networks
Reprintedfrom:Energies2018,11, 1138,doi:10.3390/en11051138 . . . . . . . . . . . . . . . . . . . 372
ChengdongLi,ZixiangDing, JianqiangYi,YishengLvandGuiqingZhang
DeepBeliefNetworkBasedHybridModel forBuildingEnergyConsumptionPrediction
Reprintedfrom:Energies2018,11, 242,doi:10.3390/en11010242 . . . . . . . . . . . . . . . . . . . . 391
Ping-HuanKuoandChiou-JyeHuang
AHighPrecisionArtificialNeuralNetworksModel forShort-TermEnergyLoadForecasting
Reprintedfrom:Energies2018,11, 213,doi:10.3390/en11010213 . . . . . . . . . . . . . . . . . . . . 417
vi
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik