Seite - 9 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 9 -
Text der Seite - 9 -
Energies2018,11, 2226
(2) Select 0.5 popsize better chaotic disturbance fruit flies. Compute the fitness value of each
Fruit fly from 2popsize chaotic disturbance fruit flies, and arrange these fruit flies to be a
sequencebasedontheorderoffitnessvalues. Then, select the fruitflieswith0.5popsizeranking
ahead in the fitness values; as a result, the 0.5 popsize better chaotic disturbance fruit flies
areobtained.
(3) Determine0.5popsizecurrent fruitflieswithbetterfitness. Compute thefitnessvalueofeach
Fruit fly fromcurrentQFOA,andarrange these fruitflies tobeasequencebasedontheorderof
fitnessvalues. Then, select the fruitflieswith0.5popsizerankingaheadin thefitnessvalues.
(4) FormthenewCQFOApopulation.Mixthe0.5popsizebetterchaoticdisturbancefruitflieswith
0.5popsizecurrent fruitflieswithbetterfitness fromcurrentQFOA,andformanewpopulation
thatcontainsnew1popsize fruitflies,andnameit thenewCQFOApopulation.
(5) Completeglobalchaoticperturbation. AfterobtainingthenewpopulationofCQFOA, take it
as thenewpopulationofQFOAandcontinuetoexecute theQFOAprocess.
2.2.4. ImplementationStepsofCQFOA
Thestepsof theproposedCQFOAforparameteroptimizationofanLS-SVRmodelareas follows
asshowninFigure1.
Step1. Initialization. ThepopulationsizeofquantumDrosophila is1popsize; themaximumnumber
of iterations isGen-max; therandomsearchradius isR; andthechaosdisturbancecontrol coefficient
isNGCP.
Step2. Randomsearching. For quantumrotationangle, θij, of a randomsearch, according to the
quantumrotation angle, fruit fly locations on eachdimension are updated, and then, a quantum
revolvingdoor isappliedtoupdate thequantumsequence,asshowninEquations(26)and(27) [34,35]:
θij = θ(j)+R×rand(1) (26)
qij= abs ([
cosθij −sinθij
sinθij cosθij ]
×Q(j) )
, (27)
where i is an individual of quantum fruit flies, i = 1,2,. . . ,1popsize; j is the position dimension
of quantum fruit flies, j = 1,2,. . . , l. As mentioned above, the position of qij is non-negative
constrained, thus, the absolute function, abs() is used to take the absolute value of each element
in thecalculationresult.
Step3.Calculatingfitness.MappingeachDrosophila location,qi, to thefeasibledomainofanLS-SVR
model parameters to receive the parameters, (γi,σi). The training data are used to complete the
trainingprocessesof theLS−SVRi modelandcalculate the forecastingvalue in the trainingstage
correspondingtoeachsetofparameters. Then, the forecastingerror is calculatedas inEquation(12)of
CQFOAbythemeanabsolutepercentageerror (MAPE),asshowninEquation(28):
MAPE= 1
N N
∑
i=1 ∣∣∣∣∣ fi(x)−
fˆi(x)fi(x) ∣∣∣∣∣×100%, (28)
whereN is the totalnumberofdatapoints; fi(x) is theactual loadvalueatpoint i; and fˆi(x) is the
forecasted loadvalueatpoint i.
Step4.Choosingthecurrentoptimum. Calculate the tasteconcentrationof fruitfly,Smelli, byusing
Equation(12),andfindthebestflavorconcentrationof individual,Best_Smelli,byEquation(13),as the
optimalfitnessvalue.
Step 5. Updating global optimization. Comparewhether the contemporary odor concentration,
Best_Smelli=current, is better than the global optima, Best_Smelli. If so, update the global value by
9
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik