Seite - 11 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 11 -
Text der Seite - 11 -
Energies2018,11, 2226
3. ForecastingResults
3.1.Dataset ofExperimentalExamples
Totest theperformanceof theproposedLS-SVR-CQFOAmodel, thispaperemploystheMELdata
fromanislanddataacquisitionsystemin2014(IDAS2014) [45]andthedataofGEFCom2014-E[46]
to carryoutanumerical forecast. Taking thewhole timeof 24has the sampling interval, the load
datacontains168-hour loadvalues in total, i.e., from01:0014 July2014 to24:0020 July2014 in IDAS
2014 (namely IDAS2014), andanother two loaddatasetswith the same168-hour loadvalues, i.e.,
from01:001 January2014 to24:007 January2014(namelyGEFCom2014(Jan.)) andfrom01:001 July
2014 to24:007 July2014 (namelyGEFCom2014(July)) inGEFCom2014-E, respectively.
Theprecisenessandintegrityofhistoricaldatadirectly impact the forecastingaccuracy. Thedata
of thehistorical loadare collectedandobtainedbyelectrical equipment. To someextent, thedata
transmissionandmeasurementwill leadtosome“baddata”inthedataofhistorical load,whichmainly
includesmissingandabnormaldata. If thesedataareusedformodeling, theestablishmentof load
forecastingmodelandthe forecastingwillbringadverseeffects. Thus, thepreprocessingofhistorical
data is essential to load forecasting. In this paper, before the numerical test, thedata of theMEL
arepreprocessed, including: completing themissingdata; identifyingabnormaldata; eliminating
and replacing unreasonable data; andnormalizingdata. When the input of anLS-SVRmodel is
multidimensionalwitha largedatasize (e.g., severalordersofmagnitude), itmayleadtoproblems
whenusingtherawdatato implementmodel trainingdirectly. Therefore, it isessential that thesample
dataarenormalizedforprocessing, tokeepall thesampledatavalues inacertain interval (this topic
limits [0,1]), ensuringthatallof thedatahavethesameorderofmagnitude.
Thenormalizationof loaddata isconvertedaccordingtoEquation(31),where i=1,2, . . . ,N (N is
thenumberofsamples);xi andyi represent thevaluesofbeforeandafter thenormalizationofsample
data, respectively; andmin(xi) andmax(xi) represent theminimal andmaximalvaluesof sample
data, respectively.
yi= xi−min(xi )
max(xi)−min(xi) (31)
After the end of the forecasting, it is necessary to use the inverse normalization equation to
calculate theactual loadvalue,asshowninEquation(32):
xi=(max(xi)−min(xi))yi+min(xi). (32)
Thenormalizeddataof thevalues in IDAS2014,GEFCom2014 (Jan.) andGEFCom2014 (July)are
collectedandshowninTables1–3, respectively.
Duringthemodelingprocesses, the loaddataaredividedinto threeparts: the trainingsetwith
the former120h, thevalidationsetwith themiddle24h,andthe testingsetwith the latter24h. Then,
therolling-basedmodelingprocedure,proposedbyHong[18,47], isappliedtoassistCQFOAto look
forappropriateparameters, (γ,σ),ofanLS-SVRmodelduringthetrainingstage.Repeat thismodeling
procedureuntilall forecasting loadsarereceived. Thetrainingerrorandthevalidationerrorcanbe
calculatedsimultaneously. Theadjustedparameters, (γ,σ),wouldbeselectedas themost suitable
parametersonlywithboth thesmallestvalidationandtestingerrors. The testingdataset isneverused
during the trainingandvalidationstages; itwill onlybeused tocalculate the forecastingaccuracy.
Eventually, the24h’s loaddataare forecastedbytheproposedLS-SVR-CQFOAmodel.
11
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik