Seite - 13 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 13 -
Text der Seite - 13 -
Energies2018,11, 2226
Table3.Normalizationvaluesof loaddata forGEFCom2014(July).
Time 1July 2July 3July 4July 5July 6July 7July
01:00 0.1562 0.1612 0.1583 0.2747 0.2636 0.1699 0.1063
02:00 0.0728 0.0882 0.0763 0.1302 0.1266 0.0857 0.0394
03:00 0.0238 0.0348 0.0232 0.0456 0.0554 0.0302 0.0054
04:00 0.0000 0.0000 0.0000 0.0000 0.0063 0.0000 0.0000
05:00 0.0222 0.0186 0.0181 0.0190 0.0000 0.0021 0.0302
06:00 0.0945 0.0957 0.1040 0.0589 0.0554 0.0154 0.1187
07:00 0.2811 0.2781 0.3143 0.2091 0.1872 0.0955 0.2972
08:00 0.4692 0.4736 0.5172 0.4316 0.4153 0.2521 0.4903
09:00 0.6244 0.6212 0.6637 0.6873 0.7008 0.4459 0.6424
10:00 0.7396 0.7516 0.7733 0.8878 0.9017 0.6131 0.7476
11:00 0.8306 0.8479 0.8722 0.9734 0.9561 0.7163 0.8425
12:00 0.8979 0.9209 0.9389 1.0000 0.9561 0.7570 0.9051
13:00 0.9378 0.9673 0.9678 0.9876 0.9111 0.7809 0.9434
14:00 0.9737 1.0000 0.9938 0.9287 0.8515 0.7928 0.9865
15:00 0.9879 0.9829 1.0000 0.8546 0.8243 0.8111 0.9995
16:00 0.9970 0.9290 0.9881 0.8032 0.8462 0.8574 1.0000
17:00 1.0000 0.8564 0.9423 0.8004 0.9195 0.9199 0.9962
18:00 0.9960 0.8101 0.9005 0.8279 0.9937 0.9853 0.9833
19:00 0.9687 0.7567 0.8672 0.8203 1.0000 1.0000 0.9579
20:00 0.9176 0.6907 0.7756 0.7386 0.9435 0.9579 0.9213
21:00 0.9044 0.6489 0.7377 0.6787 0.9362 0.9417 0.8975
22:00 0.8291 0.5461 0.6354 0.5428 0.8692 0.8687 0.7875
23:00 0.6138 0.3572 0.4262 0.3279 0.6883 0.6426 0.5701
24:00 0.4095 0.1678 0.2272 0.0913 0.4341 0.4213 0.3927
3.2. ForecastingAccuracy IndexesandPerformanceTests
3.2.1. ForecastingAccuracyIndex
Thisstudyuses theMAPE (mentionedinEquation(28)), therootmeansquareerror (RMSE),and
themeanabsoluteerror (MAE)as forecastingaccuracy indexes. TheRMSEandMAEaredeïŹnedas in
Equations (33)and(34), respectively:
RMSE= âââââNi=1(fi(x)â fËi(x))2
N (33)
MAE= 1
N N
â
i=1 âŁâŁâŁfi(x)â fËi(x)âŁâŁâŁ, (34)
whereN is thetotalnumberofdatapoints; fi(x) is theactualvalueatpoint i;and fËi(x) is theforecasting
valueatpoint i.
3.2.2. ForecastingPerformanceImprovementTests
Todemonstrate the signiïŹcant forecastingperformancesof theproposedmodel,Dieboldand
Mariano [48] andDerrac et al. [49] suggest that, for a small data size (24-h load forecasting) test,
aWilcoxonsigned-ranktest [50] is suitable. Thus,wedecidedtoapply theWilcoxonsigned-ranktest.
For thesamedatasize,aWilcoxontestdetects thesigniïŹcanceof thedifference (i.e., the forecasting
errorsfromtwoforecastingmodels) inthecentral tendency. Therefore, letdibetheabsoluteforecasting
errorsfromanytwomodelsonithforecastingvalue:R+bethesumofranksthatdi>0;Râ thesumof
ranks thatdi<0. Ifdi=0, then, removethiscomparisonanddecrease thesamplesize. Thestatistics
ofWilcoxontest,W, is calculatedas inEquation(37):
W=min { R+,Râ }
. (35)
13
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik