Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Seite - 15 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 15 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Bild der Seite - 15 -

Bild der Seite - 15 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text der Seite - 15 -

Energies2018,11, 2226 Table 6. Parameters combination of LS-SVR determined by CQFOA and other algorithms for GEFCom2014(July). OptimizationAlgorithms Parameters MAPEofValidation(%) ComputationTimes(s) γ σ LS-SVR-CQPSO[36] 375 92 0.96 139 LS-SVR-CQTS[37] 543 59 1.04 107 LS-SVR-CQGA[38] 684 62 0.98 159 LS-SVR-CQBA[39] 498 90 0.95 239 LS-SVR-FOA 413 48 1.51 79 LS-SVR-QFOA 384 83 1.07 212 LS-SVR-CQFOA, 482 79 0.79 147 Basedonthesametrainingsettings,anotherrepresentativemodel, theback-propagationneural network (BPNN) is comparedwith the proposedmodel. The forecasting results of thesemodels mentionedaboveandtheactualvaluesfor IDAS2014,GEFCom2014(Jan.) andGEFCom2014(July)are given inFigures2–4, respectively. This indicates that theproposedLS-SVR-CQFOAmodelachievesa betterperformance thantheotheralternativemodels, i.e., closer to theactual loadvalues. Figure2.ForecastingvaluesofLS-SVR-CQFOAandothermodels for IDAS2014. 15
zurück zum  Buch Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Titel
Short-Term Load Forecasting by Artificial Intelligent Technologies
Autoren
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Herausgeber
MDPI
Ort
Basel
Datum
2019
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-03897-583-0
Abmessungen
17.0 x 24.4 cm
Seiten
448
Schlagwörter
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies