Seite - 15 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 15 -
Text der Seite - 15 -
Energies2018,11, 2226
Table 6. Parameters combination of LS-SVR determined by CQFOA and other algorithms for
GEFCom2014(July).
OptimizationAlgorithms Parameters
MAPEofValidation(%) ComputationTimes(s)
γ σ
LS-SVR-CQPSO[36] 375 92 0.96 139
LS-SVR-CQTS[37] 543 59 1.04 107
LS-SVR-CQGA[38] 684 62 0.98 159
LS-SVR-CQBA[39] 498 90 0.95 239
LS-SVR-FOA 413 48 1.51 79
LS-SVR-QFOA 384 83 1.07 212
LS-SVR-CQFOA, 482 79 0.79 147
Basedonthesametrainingsettings,anotherrepresentativemodel, theback-propagationneural
network (BPNN) is comparedwith the proposedmodel. The forecasting results of thesemodels
mentionedaboveandtheactualvaluesfor IDAS2014,GEFCom2014(Jan.) andGEFCom2014(July)are
given inFigures2–4, respectively. This indicates that theproposedLS-SVR-CQFOAmodelachievesa
betterperformance thantheotheralternativemodels, i.e., closer to theactual loadvalues.
Figure2.ForecastingvaluesofLS-SVR-CQFOAandothermodels for IDAS2014.
15
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik