Seite - 18 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 18 -
Text der Seite - 18 -
Energies2018,11, 2226
Table10.ResultsofWilcoxonsigned-ranktest for IDAS2014.
ComparedModels WilcoxonSigned-RankTest
T0.025 =81 T0.05 =91 p-Value
LS-SVR-CQFOAvs. BPNN 0T 0T 0.000**
LS-SVR-CQFOAvs. LS-SVR-CQPSO 72T 72T 0.022**
LS-SVR-CQFOAvs. LS-SVR-CQTS 64T 64T 0.017**
LS-SVR-CQFOAvs. LS-SVR-CQGA 67T 67T 0.018**
LS-SVR-CQFOAvs. LS-SVR-CQBA 60T 60T 0.012**
LS-SVR-CQFOAvs. LS-SVR-FOA 50T 50T 0.009**
LS-SVR-CQFOAvs. LS-SVR-QFOA 68T 68T 0.019**
TDenotes that theLS-SVR-CQGAmodelsignificantlyoutperformstheothermodels. ** implies thep-value is lower
thanα=0.025; * implies thep-value is lower thanα=0.05.
Table11.ResultsofWilcoxonsigned-ranktest forGEFCom2014(Jan.).
ComparedModels WilcoxonSigned-RankTest
T0.025 =81 T0.05 =91 p-Value
LS-SVR-CQFOAvs. BPNN 0T 0T 0.000**
LS-SVR-CQFOAvs. LS-SVR-CQPSO 74T 74T 0.023**
LS-SVR-CQFOAvs. LS-SVR-CQTS 75T 75T 0.024**
LS-SVR-CQFOAvs. LS-SVR-CQGA 78T 78T 0.026**
LS-SVR-CQFOAvs. LS-SVR-CQBA 80T 80T 0.027**
LS-SVR-CQFOAvs. LS-SVR-FOA 65T 65T 0.018**
LS-SVR-CQFOAvs. LS-SVR-QFOA 72T 72T 0.022**
TDenotes that theLS-SVR-CQGAmodelsignificantlyoutperformstheothermodels. ** implies thep-value is lower
thanα=0.025; * implies thep-value is lower thanα=0.05.
Table12.ResultsofWilcoxonsigned-ranktest forGEFCom2014(July).
ComparedModels WilcoxonSigned-RankTest
T0.025 =81 T0.05 =91 p-Value
LS-SVR-CQFOAvs. BPNN 0T 0T 0.000**
LS-SVR-CQFOAvs. LS-SVR-CQPSO 73T 73T 0.023**
LS-SVR-CQFOAvs. LS-SVR-CQTS 76T 76T 0.024**
LS-SVR-CQFOAvs. LS-SVR-CQGA 77T 77T 0.026**
LS-SVR-CQFOAvs. LS-SVR-CQBA 79T 79T 0.027**
LS-SVR-CQFOAvs. LS-SVR-FOA 65T 65T 0.018**
LS-SVR-CQFOAvs. LS-SVR-QFOA 71T 71T 0.022**
TDenotes that theLS-SVR-CQGAmodelsignificantlyoutperformstheothermodels. ** implies thep-value is lower
thanα=0.025; * implies thep-value is lower thanα=0.05.
4.Discussion
Takingthe IDAS2014datasetasanexample,firstly, the forecastingresultsof theseLS-SVR-based
modelsareall closer to theactual loadvalues thantheBPNNmodel. ThisshowsthatLS-SVR-based
models can simulatenonlinear systemsofmicrogrid loadmore accurately than theBPNNmodel,
dueto itsadvantages indealingwithnonlinearproblems.
Secondly, inTable 4, the selectedFOAandQFOAalgorithmscouldachieve thebest solution,
(γ,σ)= (581,109) and (γ, σ) = (638, 124), with forecasting error, (RMSE = 15.93, MAPE= 2.48%,
MAE=15.63)and(RMSE=14.87,MAPE=2.32%,MAE=14.61), respectively.However, thesolution
canbefurther improvedbytheproposedCQFOAalgorithmto(γ,σ)= (734,104)withmoreaccurate
forecastingperformance, (RMSE=14.10,MAPE=2.21%,MAE=13.88). Similar results couldalso
be learnedintheGEFCom2014(Jan.) andtheGEFCom2014(July) fromTables5and6, respectively.
This illustrates that theproposedapproach is feasible, i.e.,hybridizingtheFOAwithQCMandchaotic
18
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik