Seite - 19 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 19 -
Text der Seite - 19 -
Energies2018,11, 2226
mapping function todeterminemoreappropriateparametersof anLS-SVRmodel to improve the
forecastingaccuracy.
Comparing theLS-SVR-QFOAmodelwith theLS-SVR-FOAmodel, the forecasting accuracy
of theLS-SVR-QFOAmodel is superior to thatof theLS-SVR-FOAmodel. Thisdemonstrates that
theQCMempowers the fruitflytohavequantumbehaviors, i.e., theQFOAfindmoreappropriate
parametersofanLS-SVRmodel,which improves the forecastingaccuracyof theLS-SVR-FOAmodel
inwhich theFOAishybridizedwithanLS-SVRmodel. Forexample, inTable4, theusageof theQCM
inFOAchanges the forecastingperformances (RMSE=15.93,MAPE=2.48%,MAE=15.63)of the
LS-SVR-FOAmodel to themuchbetterperformance (RMSE=14.87,MAPE=2.32%,MAE=14.61)
of theLS-SVR-QFOAmodel. Similar results aredemonstrated in theGEFCom2014 (Jan.) and the
GEFCom2014(July) fromTables5and6, respectively.
ForforecastingperformancecomparisonbetweentheLS-SVR-CQFOAandLS-SVR-QFOAmodels,
thevaluesofRMSE,MAPE,andMAEfor theLS-SVR-CQFOAmodelaresmaller thanthoseof the
LS-SVR-QFOAmodel. This reveals that the introductionofcatchaoticmappingfunction intoQFOA
playsapositiverole insearchingappropriateparameterswhenthepopulationofQFOAalgorithmis
trappedinto localoptima. Then, theCQFOAfindsmoreappropriateparameters.Asaresult, asshown
inTable4,employingCQFOAtoselect theparameters foranLS-SVRmodelmarkedly improves the
performance (RMSE=14.87,MAPE=2.32%,MAE=14.61)of theLS-SVR-QFOAmodel to themuch
betterone (RMSE=14.10,MAPE=2.21%,MAE=13.88)of theLS-SVR-CQFOAmodel. Similar results
are illustrated in theGEFCom2014(Jan.) andtheGEFCom2014 (July) fromTables5and6, respectively.
Comparing the time-consumingproblemduring theparameter searchingprocesses in all the
IDAS2014, theGEFCom2014 (Jan.), andtheGEFCom2014 (July)datasets, theproposedCQFOAis less
thanthatof theCQGAandCQBAalgorithms,butmore thanthatof theCQPSOandCQTSalgorithms.
However, consideringthe timerequirementsof theactualapplication, the increase in timecompared
withCQPSO(more than7s)andCQTS(more than23s) isacceptable.
Finally, some limitations should be noticed. This paper only employs an existing dataset to
establishtheproposedmodel; thus, fordifferentseasons,months,weeks,anddates, theelectricity load
patternsshouldbechangedseasonbyseason,monthbymonth,andweekbyweek. Forreal-world
applications, thispapershouldbeagoodbeginningtoguideplannersanddecision-makerstoestablish
electricity load forecastingmodels overlapping the seasons,months, andweeks to achievemore
comprehensive results. Thus, our planned future research direction is to explore the feasibility
of hybridizingmore powerful novel optimization frameworks (e.g., chaotic mapping functions,
quantum computingmechanism, and hourly, daily, weekly, monthly adjustedmechanism) and
novelmeta-heuristicalgorithmswithanLS-SVRmodel toovercomethedrawbacksofevolutionary
algorithmstoachieveexcellent forecastingaccuracy.
5.Conclusions
Thispaperproposesanovelhybrid forecastingmodelbyhybridizinganLS-SVRmodelwith
theQCM, the cat chaoticmapping function, and the FOA. The forecasting results show that the
proposedmodelachievesbetterperformance thanthealternative forecastingmodels,byhybridizing
chaoticmapping function,QCM,andotherevolutionaryalgorithmswithanLS-SVR-basedmodel.
Employingthecatchaoticmappingfunctiontoenrichthediversityofsearchingscopeandenhancethe
ergodicityof thepopulationcouldsuccessfullyavoid trapping into localoptima,and,alsoproves that
applyingQCMtoovercomethe limitationsof the fruitfly’ssearchingbehaviorsempowers the fruit
flytoundertakequantumsearchingbehaviors, therebyachievingmoresatisfactoryresults forMEL
forecasting. Theglobalchaoticperturbationstrategybasedonthecatmappingfunctionisemployedto
jumpoutof localminimawhile thepopulationofQFOAsuffers fromprematureconvergence,andalso
helps to improvethe forecastingperformance.
AuthorContributions:M.-W.L.andW.-C.H.conceivedanddesignedtheexperiments;G.J. andZ.Y.performed
theexperiments;M.-W.L.andW.-C.H.analyzedthedataandwrote thepaper.
19
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik