Seite - 20 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 20 -
Text der Seite - 20 -
Energies2018,11, 2226
Funding:Funding: This researchwasfundedbytheNationalNaturalScienceFoundationofChina(51509056);
theHeilongjiangProvinceNaturalScienceFund(E2017028); theFundamentalResearchFunds for theCentral
Universities (HEUCFG201813); theOpenFundof theStateKeyLaboratoryofCoastalandOffshoreEngineering
(LP1610); Heilongjiang SanjiangProjectAdministration ScientificResearch andExperiments (SGZL/KY-08);
andthe JiangsuDistinguishedProfessorProject (no. 9213618401), JiangsuNormalUniversity, JiangsuProvincial
DepartmentofEducation,China.
Acknowledgments:Ming-WeiLi, JingGeng,andYangZhangacknowledgethesupport fromtheprojectgrants:
theNationalNaturalScienceFoundationofChina(51509056); theHeilongjiangProvinceNaturalScienceFund
(E2017028); theFundamentalResearchFunds for theCentralUniversities (HEUCFG201813); theOpenFund
of theStateKeyLaboratoryofCoastal andOffshoreEngineering (LP1610); andHeilongjiangSanjiangProject
AdministrationScientificResearchandExperiments (SGZL/KY-08).Wei-ChiangHongacknowledges thesupport
fromtheJiangsuDistinguishedProfessorProject (no. 9213618401)ofJiangsuNormalUniversity, JiangsuProvincial
DepartmentofEducation,China.
Conflictsof Interest:Theauthorsdeclarenoconflictof interest.
References
1. Maçaira,P.M.;Souza,R.C.;Oliveira,F.L.C.Modellingandforecasting theresidential electricityconsumption
inBrazilwithpegelsexponential smoothingtechniques.ProcediaComput. Sci. 2015,55, 328–335. [CrossRef]
2. Pappas, S.S.; Ekonomou, L.; Karampelas, P.; Karamousantas, D.C.; Katsikas, S.K.; Chatzarakis, G.E.;
Skafidas,P.D.Electricitydemand load forecastingof theHellenicpower systemusinganARMAmodel.
Electr. PowerSyst. Res. 2010,80, 256–264. [CrossRef]
3. Dudek,G.Pattern-basedlocal linearregressionmodels forshort-termloadforecasting.Electr.PowerSyst.Res.
2016,130, 139–147. [CrossRef]
4. Chen,Y.;Luh,P.B.;Guan,C.;Zhao,Y.;Michel,L.D.;Coolbeth,M.A.;Friedland,P.B.;Rourke,S.J. Short-term
load forecasting: Similarday-basedwaveletneuralnetworks. IEEETrans. PowerSyst. 2010,25, 322–330.
[CrossRef]
5. Li,S.;Wang,P.;Goel,L.Short-termloadforecastingbywavelet transformandevolutionaryextremelearning
machine.Electr. PowerSyst. Res. 2015,122, 96–103. [CrossRef]
6. Fan,G.F.;Wang,A.; Hong,W.C.Combininggreymodel and self-adapting intelligent greymodelwith
genetic algorithmandannual share changes innatural gasdemand forecasting. Energies 2018, 11, 1625.
[CrossRef]
7. Ma, X.; Liu, Z.Application of a novel time-delayed polynomial greymodel to predict the natural gas
consumption inChina. J.Comput.Appl.Math. 2017,324, 17–24. [CrossRef]
8. Lou,C.W.;Dong,M.C.Anovel randomfuzzyneuralnetworks for tacklinguncertaintiesof electric load
forecasting. Int. J.Electr. PowerEnergySyst. 2015,73, 34–44. [CrossRef]
9. Ertugrul,Ö.F.Forecastingelectricity loadbyanovel recurrentextremelearningmachinesapproach. Int. J.
Electr. PowerEnergySyst. 2016,78, 429–435. [CrossRef]
10. Geng, J.;Huang,M.L.;Li,M.W.;Hong,W.C.Hybridizationofseasonalchaoticcloudsimulatedannealing
algorithminaSVR-based loadforecastingmodel.Neurocomputing2015,151, 1362–1373. [CrossRef]
11. Hooshmand,R.A.;Amooshahi,H.;Parastegari,M.Ahybrid intelligentalgorithmBasedshort-termload
forecastingapproach. Int. J.Electr. PowerEnergySyst. 2013,45, 313–324. [CrossRef]
12. Niu,D.X.;Shi,H.;Wu,D.D.Short-termloadforecastingusingBayesianneuralnetworks learnedbyhybrid
MonteCarloalgorithm.Appl. SoftComput. 2012,12, 1822–1827. [CrossRef]
13. Hanmandlu,M.;Chauhan,B.K.Loadforecastingusinghybridmodels. IEEETrans. PowerSyst. 2011,26,
20–29. [CrossRef]
14. Mahmoud,T.S.;Habibi,D.;Hassan,M.Y.;Bass,O.Modellingself-optimisedshort termloadforecastingfor
mediumvoltage loadsusingtunningfuzzysystemsandartificialneuralnetworks.EnergyConvers.Manag.
2015,106, 1396–1408. [CrossRef]
15. Suykens, J.A.K.; Vandewalle, J.; DeMoor, B.Optimal control by least squares support vectormachines.
NeuralNetw. 2001,14, 23–35. [CrossRef]
16. Sankar,R.; Sapankevych,N.I.Timeseriespredictionusingsupportvectormachines:Asurvey. IEEEComput.
Intell.Mag. 2009,4, 24–38.
17. Vapnik,V.N.TheNatureofStatisticalLearningTheory; Springer:NewYork,NY,USA,1995.
20
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik