Seite - 21 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 21 -
Text der Seite - 21 -
Energies2018,11, 2226
18. Hong,W.C.Electric loadforecastingbyseasonal recurrentLS-SVR(supportvector regression)withchaotic
artificialbeecolonyalgorithm.Energy2011,36, 5568–5578. [CrossRef]
19. Fan,G.F.;Peng,L.L.;Zhao,X.;Hong,W.C.ApplicationsofhybridEMDwithPSOandGAforanSVR-based
loadforecastingmodel.Energies2017,10, 1713. [CrossRef]
20. Suykens, J.A.K.;Vanddewalle, J.Least squaressupportvectormachinesclassifiers.NeuralNetw. Lett. 1999,
19, 293–300. [CrossRef]
21. Wang, J.; Hu, J. A robust combination approach for short-term wind speed forecasting and
analysis—CombinationoftheARIMA(AutoregressiveIntegratedMovingAverage),ELM(ExtremeLearning
Machine),SVM(SupportVectorMachine)andLSSVM(LeastSquareSVM)forecastsusingaGPR(Gaussian
ProcessRegression)model.Energy2015,93, 41–56.
22. Hong,W.C.;Dong,Y.;Zhang,W.;Chen,L.Y.; Panigrahi,B.K.Cyclic electric load forecastingbyseasonal
LS-SVRwithchaoticgeneticalgorithm. Int. J.Electr. PowerEnergySyst. 2013,44, 604–614. [CrossRef]
23. Ju,F.Y.;Hong,W.C.ApplicationofseasonalSVRwithchaoticgravitationalsearchalgorithminelectricity
forecasting.Appl.Math.Model. 2013,37, 9643–9651. [CrossRef]
24. Fan,G.;Peng,L.L.;Hong,W.C.;Sun,F.Electric loadforecastingbytheSVRmodelwithdifferentialempirical
modedecompositionandautoregression.Neurocomputing2016,173, 958–970. [CrossRef]
25. Pan,W.T.FruitFlyOptimizationAlgorithm;TsanghaiPublishing: Taipei,Taiwan,China,2011.
26. Pan,W.T. A new fruit fly optimization algorithm: Taking the financial distressmodel as an example.
Knowl.-BasedSyst. 2012,26, 69–74. [CrossRef]
27. Mitic´,M.;Vukovic´,N.;Petrovic´,M.;Miljkovic´,Z.Chaotic fruitflyoptimizationalgorithm.Knowl.-BasedSyst.
2015,89, 446–458. [CrossRef]
28. Wu,L.;Liu,Q.;Tian,X.;Zhang, J.;Xiao,W.AnewimprovedfruitflyoptimizationalgorithmIAFOAandits
applicationtosolveengineeringoptimizationproblems.Knowl.-BasedSyst. 2018,144, 153–173. [CrossRef]
29. Han, X.; Liu, Q.; Wang, H.; Wang, L. Novel fruit fly optimization algorithm with trend search and
co-evolution.Knowl.-BasedSyst. 2018,141, 1–17. [CrossRef]
30. Zhang,X.;Lu,X.; Jia,S.;Li,X.Anovelphaseangle-encodedfruitflyoptimizationalgorithmwithmutation
adaptationmechanismappliedtoUAVpathplanning.Appl. SoftComput. 2018,70, 371–388. [CrossRef]
31. Han,S.Z.;Pan,W.T.;Zhou,Y.Y.;Liu,Z.L.Construct thepredictionmodel forChinaagriculturaloutputvalue
basedontheoptimizationneuralnetworkof fruitflyoptimizationalgorithm.FutureGener. Comput. Syst.
2018,86, 663–669. [CrossRef]
32. Yang,X.S.;Gandomi,A.H.Batalgorithm:Anovelapproachforglobalengineeringoptimization.Eng.Comput.
2012,29, 464–483. [CrossRef]
33. Narayanan,A.;Moore,M.Quantum-inspiredgeneticalgorithms. InProceedingsof the IEEEInternational
ConferenceonEvolutionaryComputation,Nagoya, Japan,20–22May1996;pp.61–66.
34. Han,K.H.;Kim, J.H.Geneticquantumalgorithmanditsapplication tocombinatorialoptimizationproblem.
InProceedingsof the 2000CongressonEvolutionaryComputation, La Jolla,CA,USA, 16–19 July2000;
pp.1354–1360.
35. Han,K.H.;Kim, J.H.Quantum-inspiredevolutionaryalgorithmforaclassofcombinatorialoptimization.
IEEETrans. Evol. Comput. 2002,6, 580–593. [CrossRef]
36. Huang,M.L.HybridizationofchaoticquantumparticleswarmoptimizationwithSVRinelectricdemand
forecasting.Energies2016,9, 426. [CrossRef]
37. Lee,C.W.; Lin,B.Y.Applicationofhybridquantumtabusearchwith support vector regression for load
forecasting.Energies2016,9, 873. [CrossRef]
38. Lee,C.W.;Lin,B.Y.Applicationsof thechaoticquantumgeneticalgorithmwithsupportvector regression in
loadforecasting.Energies2017,10, 1832. [CrossRef]
39. Li,M.W.;Geng, J.;Wang,S.;Hong,W.C.HybridchaoticquantumbatalgorithmwithSVRinelectric load
forecasting.Energies2017,10, 2180. [CrossRef]
40. Shi,D.Y.;Lu,L.J.A judgemodelof the impactof laneclosure incidenton individualvehiclesonfreeways
basedonRFIDtechnologyandFOA-GRNNmethod. J.WuhanUniv. Technol. 2012,34, 63–68.
41. Yuan,X.;Wang,P.; Yuan,Y.;Huang,Y.; Zhang,X.Anewquantuminspiredchaotic artificial bee colony
algorithmforoptimalpowerflowproblem.EnergyConvers.Manag. 2015,100, 1–9. [CrossRef]
42. Peng,A.N.Particle swarmoptimizationalgorithmbasedonchaotic theoryandadaptive inertiaweight.
J.Nanoelectron.Optoelectron. 2017,12, 404–408. [CrossRef]
21
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik