Seite - 25 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 25 -
Text der Seite - 25 -
Energies2018,11, 1009
papers [5,28,29], electric load data, particularly short term load data, illustrate an obvious cyclic
tendency, thus, the seasonalmechanismproposed in theauthors’previouspapers [5,28,29]would
be further improvedandcombinedwith the SVRCCSmodel. Finally, theproposed seasonal SVR
withCCS,namely theSVRwithchaotic cuckoosearch (SSVRCCS)model, is employed to improve
theforecastingaccuracy levelbysufficientlycapturingthenon-linearandcyclic tendencyofelectric
loadchanges. Furthermore, the forecastingresultsof theSSVRCCSmodelareusedtocompare them
withotheralternativemodels, suchas theSARIMA,GRNN,SVRCCS,andSVRCSmodels, to test the
forecastingaccuracy improvementsachieved. Theprincipal contributionof thispaper is incontinuing
tohybridize theSVRmodelwitha tentchaoticcomputingmechanism,CSalgorithm,andeventually,
combineaseasonalmechanism,towidelyexploretheelectric loadforecastingmodel toproducehigher
accuracyperformances.
The remainderof this article is organizedas follows: thebasic formulationof anSVRmodel,
theproposedCCSalgorithm,seasonalmechanism,andthemodelingdetailsof theproposedSSVRCCS
modelaredescribed inSection2.Anumericalexampleandforecastingaccuracycomparisonsamong
theproposedmodelandotheralternativemodelsarepresented inSection3. Finally, conclusionsare
given inSection4.
2.TheProposedSVRwithChaoticCuckooSearch(SSVRCCS)Model
2.1. SupportVectorRegression (SVR)Model
Themodelingdetails of anSVRmodel arepresentedbrieflyas follows. The trainingdata set,
{(xi,yi)}Ni=1, ismapped into a highdimensional feature space by a non-linearmapping function,
ϕ(x).Then, in thehighdimensional featurespace, theSVRfunction, f, is theoreticallyusedtoformulate
thenonlinearrelationshipsbetweenthe input trainingdata (xi)andtheoutputdata (yi). Thiscanbe
shownasEquation(1):
f(x)=wT ϕ(x)+b (1)
where f(x) represents the forecastedvalues; theweight,w, andthecoefficient,b, arecomputedalong
withminimizingtheempirical risk,asshowninEquation(2):
R(f)=C 1
N N
∑
i=1 Θε(yi, f(xi))+ 1
2 wTw (2)
Θε(y, f(x))= {
0, if|f(x)−y|≤ ε
|f(x)−y|−ε, otherwise (3)
where Θε(y, f(x)) is so-called ε-insensitive loss function, as shown inEquation (3). It is used to
determinetheoptimalhyperplanetoseparatethetrainingdataintotwosubsetswithmaximaldistance,
i.e.,minimizingthe trainingerrorsbetweenthese twoseparatedtrainingdatasubsetsandΘε(y, f(x)),
respectively.C isaparameter topenalize the trainingerrors. Thesecondterm, 12w Tw, is thenusedto
represent themaximaldistancebetweenmentionedtwoseparateddatasubsets,meanwhile, it also
determines thesteepnessandtheflatnessof f(x).
Then, theSVRmodelingproblemcouldbedemonstratedasminimizingthe total trainingerrors.
It isaquadraticprogrammingproblemwith twoslackvariables,ξandξ∗, tomeasure thedistance
betweenthe trainingdatavaluesandtheedgevaluesofε-tube. Trainingerrorsunder εaredenotedas
ξ∗,whereas trainingerrorsabove εaredenotedasξ, as showninEquation(4):
Min
w,ξ,ξ∗ R(w,ξ,ξ∗)= 1
2 ‖w‖2+C N
∑
i=1 (ξi+ξ ∗
i ) (4)
with theconstraints:
25
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik