Seite - 30 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 30 -
Text der Seite - 30 -
Energies2018,11, 1009
Step8: StopCriteria.
Ifthenumberofsearchiterationsaregreaterthanagivenmaximumsearchiterations, then,thebest
nestposition,x(t)k,best, amongthecurrentpopulation isdeterminedasparameters (C, σ, ε)ofanSVR
model;otherwise,gobacktoStep2andcontinuesearchingthenext iteration.
2.3. SeasonalMechanism
As indicated in existingpapers [5,28,29] the short termelectric loaddata oftendisplay cyclic
tendenciesdueto thecyclicnatureofeconomicactivities (production, transportation,operation,etc.)
or theseasonalclimate inNature (airconditionersandheaters insummerandwinter, respectively).
It isusefultoincreasetheforecastingaccuracybycalculatingtheseseasonaleffects(orseasonal indexes)
toadjust theseasonalbiases. Several researchershaveproposedseasonaladjustmentapproaches to
determine theseasonaleffects, suchasKocandAltinay[42],GohandLaw[43],andWangetal. [44],
whoall apply regressionmodels todecompose the seasonal component. Martens et al. [45] apply
a flexible Fourier transform to estimate the daily variation of the stock exchange, and compute
a seasonal estimator. Deoet al. [46] composed twoFourier transforms inacyclicperiod to further
identify theseasonalestimator.Comparingtheseseasonaladjustmentmodels,Deo’smodelextends
Martens’smodel for application togeneral cycle-lengthdata, particularly for hour-basedor other
shortercycle-lengthdata.Consideringthat thispaperdealswithhalf-hourbasedshort termelectric
load data, this paperwould like to employ the seasonalmechanismproposed byHong and his
colleagues in [5,28,29]. That is,firstlyapply theARIMAmodel to identify theseasonal lengthof the
target timeseriesdataset; secondly, calculate theseseasonal indexes toadjustcycliceffects toreceive
moresatisfiedforecastingperformances,asshowninEquation(16):
Seasonratioq= ln (
aq
fq )2
=2 ( lnaq− ln fq )
(16)
where q= j, l+ j, 2l+ j, . . . , (m− 1)l+ jwithm seasonal (cyclic) periods and l seasonal length in
eachperiod. Thirdly, theseasonal index(SI) foreachseasonalpoint j ineachperiodiscalculatedas
Equation(17):
SIj= exp (
1
m (m−1)l+j
∑
q=j Seasonratioq )
/2 (17)
where j=1,2, . . . l. Theseasonalmechanismisdemonstrated inFigure2.
f f fl fl f l f l f l f l fQl fQl f P l f P l
ɃɃ ɃɃ ɃɃ ɃɃ ɃɃ ɃɃ
7UDLQLQJ GDWD VHW
a a al al a l a l a l a l aQl aQl a P l a P l
ɃɃ ɃɃ ɃɃ ɃɃ ɃɃ ɃɃ
ɃɃɃɃɃɃɃɃɃɃ
ɃɃSeasonratio
Seasonratio SeasonratioQ SeasonratioP
( )tt
t
t
q faf
aoSeasonrati OQOQ
OQ −=¸¸¹
·
¨¨©
§
=
H[S ¸¸¹
·
¨¨©
§
= ¦+−
=
jlm
q
qj
oSeasonratim
SI 9DOLGDWLRQ GDWD VHW
fl
al Ƀ
Ƀ
fl+l
al+l f l+l
a l+l f l+l
a l+l fQl+l
aQl+l f P l l
a P l l
Figure2.Seasonalmechanism.
30
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik