Seite - 31 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 31 -
Text der Seite - 31 -
Energies2018,11, 1009
3.NumericalExamplesof theProposedSSVRCCSModel
3.1.DataSet ofNumericalExamples
Todemonstrate thesuperioritiesof the tentchaoticmappingfunctionandseasonalmechanismof
theproposedSSVRCCSmodel, thispaperuses thehalf-hourelectric loaddata fromtheQueensland
regionalmarketof theNationalElectricityMarket (NEM,Queensland,Australia) [47],namedExample
1,andtheNewYorkIndependentSystemOperator(NYISO,NewYork,NY,USA)[48],namedExample
2. Theemployedelectric loaddatacontainsa totalof768half-hourelectric loadvalues inExample1,
i.e., from00:3001October2017 to00:0017October2017. BasedonSchalkoff’s [49] recommendation
that theratioofvalidationdataset to trainingdataset shouldbeapproximatelyoneto four, therefore,
the electric loaddata set is divided into three sub-sets. The training set has 432half-hour electric
loadvalues (i.e., from00:3001October2017 to00:0009October2017). Thevalidationset contains
144half-hourelectric loadvalues(i.e., from00:3009October2017to00:0013October2017). Thetesting
sethas192half-hourelectric loadvalues (i.e., from00:3013October2017 to00:0017October2017).
Similarly, inExample2, theusedelectric loaddataalso contains a total of 768hourly electric load
values, i.e., from00:00 01 January 2018 to 23:00 1February 2018. The electric loaddata set is also
divided into three sub-sets. The training sethas432hourlyelectric loadvalues (i.e., from00:0001
January20182017 to23:0018 January2018). Thevalidationsethas144hourlyelectric loadvalues
(i.e., from00:0019 January2018 to23:0024 January2018). The testingsethas192hourlyelectric load
values (i.e., from00:0025 January2018 to23:001February2018). Tobebasedonthesamecomparison
conditions,all comparedmodels thushavethesamedatadivisionsets.
Duringthemodelingprocesses, in the trainingstage, therolling-basedprocedure,proposedby
Hong [28], is alsoapplied toassistCCSalgorithmto implementwell searching for anappropriate
parameter combination (σ,C, ε) of an SVRmodel. Specifically, theCCSalgorithmminimizes the
empirical risk,asshowninEquation(4), toobtain thepotentialparametercombinationbyemploying
thefirstn electric loaddata in the training set; then, it receives thefirst forecastedelectric loadby
the SVRmodelwith these potential parameter combination, i.e., the (n+1)th forecasting electric
load. For thesecondround, thenextnelectric loaddata, from2ndto (n+1)thelectric loadvalues,
are then used by the SVRmodel to obtain newpotential parameter combination, then, similarly,
the (n+ 2)th forecasting electric load is receive. This procedurewould never be stopped till the
totally432 forecastingelectric loadarecomputed. Thetrainingerrorandthevalidationerrorarealso
calculated ineach iteration.
Onlywith thesmallestvalidationandtestingerrors, apotentialparametercombinationcould
be finalized as the determined parameter combination of an SVRmodel. Then, the never used
testingdata setwouldbe employed todemonstrate the forecastingperformances, i.e., eventually,
the192half-hour/hourlyelectric loadwouldbeforecastedbytheproposedSSVRCCSmodel.
3.2. TheSVRwithChaoticCuckooSearch (SSVRCCS)ElectricLoadForecastingModel
3.2.1. EmbeddedParameterSettingsof theCCSAlgorithm
TheembeddedparametersofCCSalgorithmformodelingaresetas follows: thenumberofhost
nests is set tobe50; themaximumnumberof iterations is setas500; the initialprobabilityparameter
pa is set as0.25. During theparameteroptimizingprocessofanSVRmodel, the searching feasible
rangesof the threeparametersaresetas following,σ∈ [0.01, 5], ε∈ [0.01, 1], andC∈ [0.01,60,000].
Inaddition, considering that the iteration timewouldaffect theperformanceofeachmodel, thegiven
optimization time for each model with an evolutionary algorithm is set at the same inasmuch
aspossible.
31
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik