Seite - 34 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 34 -
Text der Seite - 34 -
Energies2018,11, 1009
Figure3.Theseasonal tendencyofactualhalf-hourelectric load inExample1.
3HDN
(QODUJHG LQ
)LJ 3HDN
(QODUJHG LQ )LJ 3HDN
(QODUJHG LQ
)LJ 3HDN
(QODUJHG
LQ )LJ
Figure4.ForecastingvaluesofSSVRCCSmodelandotheralternativemodels forExample1.
Figure5.TheenlargementcomparisonofPeak1fromthecomparedmodels forExample1.
34
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik