Seite - 36 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 36 -
Text der Seite - 36 -
Energies2018,11, 1009
Table3 illustrates the forecastingaccuracy indexes for theproposedSSVRCCSmodelandother
alternativecomparedmodels. It is clearly to see that theMAPE,RMSE,andMAEof theproposed
SSVRCCSmodelare0.70%,56.90,and40.79,respectively,whicharesuperiortotheotherfivealternative
models. It also implies that theproposedSSVRCCSmodelcontributesgreat improvements in termsof
loadforecastingaccuracy.
Table3.Forecastingaccuracy indexesof thecomparedmodels forExample1.
ForecastingAccuracyIndexes SARIMA(9,1,8)×(4,1,4) GRNN(œ=0.04) SSVRCCS SSVRCS SVRCCS SVRCS
MAPE(%) 3.62 1.53 0.70 0.99 1.51 2.63
RMSE 280.05 114.30 56.90 80.42 126.92 217.19
MAE 217.67 88.63 40.79 57.69 87.94 151.72
Finally, toensure thesignificantcontribution intermsof forecastingaccuracy improvement for
theproposedSSVRCCSmodel, theWilcoxonsigned-ranktestandtheFriedmantestareconducted.
WhereWilcoxonsigned-ranktest is implementedunder twosignificance levels,α=0.025andα=0.05,
by two-tail test; theFriedman test is then implementedunderonlyone significance level,α=0.05.
The test results inTable4showthat theproposedSSVRCCSmodelalmost reachesasignificance level
in termsof forecastingperformance thanotheralternativecomparedmodels.
Table4.ResultsofWilcoxonsigned-ranktestandFriedmantest forExample1.
ComparedModels WilcoxonSigned-RankTest FriedmanTest
α=0.025;
W=9264 p-Value α=0.05;
W=9264 p-Value α=0.05;
SSVRCCSvs.
SARIMA(9,1,8)×(4,1,4) 842a 0.00000** 842a 0.00000**
H0 : e1= e2= e3= e4= e5= e6
F=23.49107
p=0.000272 (RejectH0)
SSVRCCSvs.GRNN(σ=0.04) 3025a 0.00000** 3025a 0.00000**
SSVRCCSvs. SSVRCS 2159a 0.00000** 2159a 0.00000**
SSVRCCSvs. SVRCCS 3539a 0.00000** 3539a 0.00000**
SSVRCCSvs. SVRCS 4288a 0.00000** 4288a 0.00000**
aDenotes that theSSVRCCSmodelsignificantlyoutperformstheotheralternativecomparedmodels; * represents
that the test indicatesnot toaccept thenullhypothesisunderα=0.05. ** represents that the test indicatesnot to
accept thenullhypothesisunderα=0.025.
3.2.5. ForecastingResultsandAnalysis forExample2
Similar toExample1,SVRCSandSVRCCSmodelsarealso trainedbasedontherolling-based
procedurebyusingthe trainingdataset fromExample2 (mentionedinSection3.1). Theforecasting
results and thesuitableparametersofSVRCSandSVRCCSmodelsare showninTable5. It is also
obviously that theproposedSVRCCSmodelhasachievedasmaller forecastingperformance in terms
of forecastingaccuracy indexes,MAPE,RMSE,andMAE.
Table5.ThreeparametersofSVRCSandSVRCCSmodels forExample2.
EvolutionaryAlgorithms Parameters
MAPEofTesting(%) RMSEofTesting MAEofTesting
σ C ε
SVRCS 0.6628 36,844.57 0.2785 3.42 886.67 631.40
SVRCCS 0.3952 42,418.21 0.7546 2.30 515.10 426.42
Figure9alsodemonstrates theseasonal/cyclicchangingtendencyfromtheusedelectric loaddata
inExample2. Basedonthehourlyrecordingfrequency, tocompletelyaddress thechangingtendency
of theemployeddata, theseasonal length issetas24. Therefore, thereare24seasonal indexes for the
proposedSVRCCSandSVRCSmodels. Theseasonal indexes foreachhourarecomputedbasedonthe
576 forecastingvaluesof theSVRCCSandSVRCSmodels in the training(432 forecastingvalues)and
validation (144 forecastingvalues)processes. The24seasonal indexes for theSVRCCSandSVRCS
modelsare listed inTable6, respectively.
36
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik