Seite - 38 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 38 -
Text der Seite - 38 -
Energies2018,11, 1009
3HDNV DQG
(QODUJHG LQ
)LJ
3HDNV DQG
(QODUJHG LQ
)LJ 3HDNV DQG
(QODUJHG LQ
)LJ 3HDNV DQG
(QODUJHG LQ
)LJ
Figure 10. Forecasting values of SVR with chaotic cuckoo search (SSVRCCS) model and other
alternativemodels forExample2.
Figure11.TheenlargementcomparisonofPeaks1and2fromthecomparedmodels forExample2.
Figure12.TheenlargementcomparisonofPeaks3and4fromthecomparedmodels forExample2.
38
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik