Seite - 39 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 39 -
Text der Seite - 39 -
Energies2018,11, 1009
Figure13.TheenlargementcomparisonofPeaks5and6fromthecomparedmodels forExample2.
Figure14.TheenlargementcomparisonofPeaks7and8fromthecomparedmodels forExample2.
For comparisonwithother alternativemodels, Table 7demonstrates the forecastingaccuracy
indexes for each comparedmodel. Obviously, theproposedSSVRCCSmodel almost achieves the
smallest indexvalues in termsof theMAPE(0.46%),RMSE(126.10), andMAE(80.85), respectively.
It is superior to theotherfivecomparedmodels.Onceagain, it indicates that theproposedSSVRCCS
modelcouldproducemoreaccurate forecastingperformances.
Table7.Forecastingaccuracy indexesofcomparedmodels forExample2.
ForecastingAccuracyIndexes SARIMA(9,1,10)×(4,1,4) GRNN(œ=0.07) SSVRCCS SSVRCS SVRCCS SVRCS
MAPE(%) 5.16 3.19 0.46 0.86 2.30 3.42
RMSE 1233.09 753.97 126.10 262.02 515.10 886.67
MAE 956.14 577.48 80.85 152.02 426.42 631.40
Finally, twostatistical testsarealsoconductedtoensure thesignificantcontribution in termsof
forecastingaccuracy improvement for theproposedSSVRCCSmodel. The test resultsare illustrated in
Table8 that theproposedSSVRCCSmodelalmost reachessignificance level in termsof forecasting
performance thanotheralternativecomparedmodels.
39
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik