Seite - 44 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 44 -
Text der Seite - 44 -
energies
Article
Short-TermLoadForecastinginSmartGrids:
AnIntelligentModularApproach
AshfaqAhmad1,*,NadeemJavaid2 ,AbdulMateen2 ,MuhammadAwais2 and
ZahoorAliKhan3
1 SchoolofElectricalEngineeringandComputing,TheUniversityofNewcastle,Callaghan2308,Australia
2 DepartmentofComputerScience,COMSATSUniversity Islamabad, Islamabad44000,Pakistan;
nadeemjavaid@comsats.edu.pk(N.J.); ammateen49@gmail.com(A.M.); amawais@hotmail.com(M.A.)
3 Computer InformationScience,HigherCollegesofTechnology,Fujairah4114,UAE;zkhan1@hct.ac.ae
* Correspondence: ashfaqahmad@ieee.org;Tel.: +61-416-618-613
Received: 11November2018;Accepted: 1 January2019;Published: 4 January2019
Abstract:Dailyoperationsandplanning inasmartgridrequireaday-aheadloadforecastingof its
customers. Theaccuracyofday-ahead load-forecastingmodelshasa significant impactonmany
decisionssuchasschedulingof fuelpurchases, systemsecurityassessment, economicschedulingof
generatingcapacity,andplanningforenergytransactions.However,day-aheadloadforecasting isa
challenging taskdue to itsdependenceonexternal factors suchasmeteorological andexogenous
variables. Furthermore, theexistingday-aheadload-forecastingmodelsenhanceforecastaccuracy
bypaying thecostof increasedexecution time. Aimingat improving the forecast accuracywhile
notpayingthe increasedexecutions timecost,ahybridartificialneuralnetwork-basedday-ahead
load-forecastingmodel forsmartgrids isproposedinthispaper. Theproposedforecastingmodel
comprises threemodules: (i)apre-processingmodule; (ii)a forecastmodule;and(iii)anoptimization
module. In thefirstmodule, correlated laggedloaddataalongwith influentialmeteorologicaland
exogenous variables are fed as inputs to a feature selection techniquewhich removes irrelevant
and/orredundantsamples fromthe inputs. In thesecondmodule,asigmoidfunction(activation)
and amultivariate auto regressive algorithm (training) in the artificial neural network are used.
Thethirdmoduleusesaheuristics-basedoptimizationtechniquetominimize the forecasterror. In
the thirdmodule, ourmodifiedversion of an enhanceddifferential evolution algorithm is used.
Theproposedmethodisvalidatedviasimulationswhere it is testedonthedatasetsofDAYTOWN
(Ohio,USA)andEKPC(Kentucky,USA). Incomparisonto twoexistingday-aheadload-forecasting
models, results showimprovedperformanceof theproposedmodel in termsofaccuracy,execution
time,andscalability.
Keywords: artificialneuralnetwork; loadprediction;smartgrid;heuristicoptimization;energytrade;
accuracy
1. Introduction
Anexisting/traditionalgridsystemneedsrenovationtobridge theever-increasinggapbetween
demandandsupply andalso tomeet essential challenges suchasgrid reliability, grid robustness,
customer electricity cost minimization, etc. [1]. In this regard, recent integration of advanced
communication technologies and infrastructures into traditional grids have led to the formation
ofsocalledsmartgrids(SGs)[2]. Thenationalnational instituteofstandardsandtechnology(NIST)[3]
conceptualdiagramofsmartgrid (SG) is showninFigure1. Thisconceptualdiagramcanbeusedasa
referencemodelforstandardizationworksinsevenSGdomains: generation, transmission,distribution,
endusers,markets,operations,andserviceproviders. Eachdomain involvesoneormoreSGactors
(e.g.,devices,systems,programs,etc.) tomakedecisionsforrealizinganapplicationbasedonexchange
Energies2019,12, 164;doi:10.3390/en12010164 www.mdpi.com/journal/energies44
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik