Seite - 46 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 46 -
Text der Seite - 46 -
Energies2019,12, 164
costofhighexecution time (slowconvergence rate)due tohighcomplexity.Whereas, theMarkov
chain-basedmodels [14–16] have lowexecution time, but at the cost of reduced forecast accuracy.
Furthermore, the stochasticdistribution-basedmodels [17–20]need improvement in termsofboth
accuracy and execution time. The fuzzyANN-basedmodels [21–26] achievemoderate accuracy,
butat thecostofhighexecution time. Finally,hybridANN-basedmodels improve theaccuracyof
ANN-basedmodels toanextent,butat thecostofhighexecutiontime.AmongthehybridANN-based
models, reference [27] selects featuresviaMI techniqueandANN-basedprediction to forecast the
day-ahead load (DAL)of SGs. To improve theaccuracyof [27], theauthors in [28] addaheuristic
optimization-basedtechniquewith [27]. Similarly,anotherhybridstrategy ispresented in [29] subject
toDALFofSGs.However, reference[27,29]achieverelativelyhighforecastaccuracywhile takinghigh
timetoexecute thealgorithm. Furthermore, theforecasterrorof theexistingworks[28,29]significantly
increasesduetometeorologicalvariables (suchasdewpoint temperature,drybulb temperature, etc.),
andexogenousvariables (suchascultural andsocial events, human impact, etc.). Thus,weaimat
improvingthe forecastaccuracyofDALFmodelswithout increasingtheirexecutiontime,andinthe
presenceofmeteorologicalandexogenousvariables.
In our proposedwork, a hybrid ANN-basedDALFmodel for SGs is presentedwhich is a
multi-model forecastingANNwithasupervisedarchitectureandMARAfor training. Theproposed
model followsamodular structure (it has three functionalmodules): apre-processor, a forecaster,
andanoptimizer. Given thecorrelated lagged loaddataalongwith influentialmeteorological and
exogenousvariablesas inputs, thefirstmoduleremoves twotypesof features fromit: (i) redundant;
and (ii) irrelevant. Given theselected features, thesecondmoduleemploysANNtopredict future
valuesof load. TheANisactivatedbysigmoidfunctionandtheANNis trainedbyMARA.Wefurther
minimize the forecast/predictionerrorbyusinganoptimizationmodule inwhichaaheuristics-based
optimization technique is implemented. The proposed DALF strategy for SGs is validated via
simulationswhichshowthatourproposedstrategyforecaststhefutureloadofSGswithapproximately
98.76%accuracy. Tosumup, thispaperhas the followingcontributions/advantages:
• Theproposedmodel takes intoaccountexternalDALFinfluencingfactorssuchasmeteorological
andexogenousvariables.
• Duetobetteraccuracyandlessexecutiontime,wehaveusedMARAfor trainingwhichnoneof
theexistingforecastmodelshasusedfor training.
• To improve the forecast accuracyandminimize the executionof the forecastmodel,wehave
performedlocal trainingwhichnoneof theexistingforecastmodelshasused.
• Wehaveusedourmodifiedversionof theEDEintheerrorminimizationmodule. Theexisting
Bi-level strategy[28]hasusedEDEalgorithmintheerrorminimizationmodule.
• We have tested our proposed model on the datasets of two USA grids: DAYTOWN and
EKPC.Forevaluationandvalidationpurposes,wehavecomparedourproposedmodelwith
twoexisting forecastmodels (bi-level forecastandMI+ANNforecast)andprovidedextensive
simulationresults.
Pleasenote that thiswork iscontinuationofourpreviouswork in[30,31],where inboth[30,31]
wehavenotconsideredexogenousandmeteorologicalvariables. Therestof thepaper isorganized
as follows. Section2discusses recent/relevantDALFworks, Section3brieflydescribes thenewly
proposedANNandmodifiedevolutionaryalgorithm-basedDALFmodel forSGs, simulationresults
arediscussed inSection4,andSection5states theconcludingpointsdrawnfromthisworkalongwith
futurework.
2.RelatedWork
For thesakeofbetterunderstanding, theexisting techniquesarediscussed in twoclasses (linear
andnon-linear)accordingto the typeofmodelused[9]. Themodel tobeusedis totally thechoiceof
researcherduetospecificdesignconsiderations.
46
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik