Seite - 49 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 49 -
Text der Seite - 49 -
Energies2019,12, 164
definitions,optimizationof these functions is thusapotential researcharea.However, the integration
ofoptimizationtechniquefurthercomplicates theoverallmethodology.
(v)Stochasticdistribution-basedmodels:Themodel in [17]predicts thepowerusage timeseriesby
usingaprobability-basedapproach. Themodelalsoconfigureshouseholdappliancesbetweenholidays
andworkingdays.Amajorassumption in thiswork is thegaussiandistribution-basedon-off cyclesof
householdappliances,numberofappliances,andpowerconsumptionpatternofappliances. In this
work,notonlyawiderangeofappliances isconsideredbutalsohighflexibilitydegreeofappliances is
considered.However,absenceofclosedformsolutionmakes thegaussian-basedforecast strategyvery
complex.Moreover, theseassumptionscannotbealwaystrue, thus,accuracyofthepredictedload-time
series ishighlyquestionable.Animprovementover [17] ispresented in [18]. This researchworkuses
1
2 regulizer toovercomethecomputationalcomplexityofgaussiandistribution-basedDALFstrategy
in[17].Moreover, theproposedDALFstrategycancaptureheteroscedasticityof loadinamoreefficient
wayascompared[17]. Simulationsareconductedtoprove that theproposedDALFstrategyperforms
better thantheexistingone. Tosumup,weconcludethat [18]hasovercomethecomplexityof [17] to
someextent;however, thebasicassumptions (gaussiandistribution-basedon-off cyclesofhousehold
appliances,numberofappliances,andpowerconsumptionpatternofappliances) stillhold thebases
and thusmake theproposalhighlyquestionable in termsofaccuracy. Asemi-parametric additive
forecastmodel ispresented in [19]. Thiswork isbasedonpoint forecastandcalculates theprediction
intervalsviaamodifiedbootstrapalgorithm. Similarly,anothersemi-parametricgeneralizedadditive
loadforecastmodel ispresented in [20]. In termsof forecasthorizon, thegeneralizedadditive forecast
model isbetter thanthenon-generalizedonedueto itsdual forecast capability; short-termandmiddle
term.However,both the forecastmodelsarenotsufficient in termsofaccuracywhencomparedto the
ANN-basedmodels. Theoverall classificationhierarchyof forecast techniques isshowninFigure2,
andtheir summary isgiven inTable1.
! "
# $!
Figure2.Classificationofexistingforecast techniques.
49
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik