Seite - 56 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 56 -
Text der Seite - 56 -
Energies2019,12, 164
ThenewlyproposedMI+ANN+mEDEmodel is testedagainst the twoexistingmodels in termsof
threeperformancemetrics: (i) accuracy;and(ii) executiontimeorconvergencerate.
• Accuracy: Accuracy(.)=100−MAPE(.).Wehavemeasuredthismetric in%.
• Variance: Var(i) = 1m ∑mj=1 |pf(i, j)−pa(i, j)|. Where pa(i, j) is the mean value of pa(i, j).
Monthly variance is calculated by using the same formulawhile considering the calculated
dailyvariances.
• Execution time:Duringsimulations, the timetakenbythesystemtocompletelyexecuteagiven
forecast strategy. Thestrategyforwhichexecution time is small convergesmorequicklyandvice
versa. Insimulations,wehavemeasuredexecutiontimeinseconds.
Table2.Parametersusedinsimulations.
Parameter Value
Forecasters 24
Hiddenlayers 1
Maximumiterations 100
Neurons (in thehiddenlayer) 5
Bias 0
Initialweights 0.1
Momentum 0
Loaddata (historical) 1year
Maximumgenerations 100
ReferringtoFigure6a–fandTables3–6,whicharegraphical/tabular illustrations/representations
of the proposed MI+ANN+mEDE-based forecast model versus the two existing DALF models:
MI+ANNand bi-level. From Figure 6a,b, it is clear that the proposedMI+ANN+mEDEmodel
effectively predicts/forecasts the future loadof the two selected SGs. TheANN-based forecaster
captures thenon-linearities in thehistory load-timeseries. Thisnon-linearpredictioncapability is
notonlyduetosigmoidactivationfunctionbutalsodueto theselectedtrainingalgorithm;MARA.
Whenwelookat thehourly forecast results inFigure6c,d, the%errorof theMI+ANN-basedforecast
model is3.8%and3.81%forDAYTOWNandEKPC,respectively. The%errorof thebi-level forecast
model is 2.2% and 2.23% forDAYTOWNandEKPC, respectively. The% error of the proposed
MI+ANN+mEDE-basedforecastmodelis1.24%forbothDAYTOWNandEKPC,respectively. Similarly,
thedaily forecast resultsof the twosimulatedmodels for January2015areshowninTables3and5for
thetwoselectedUSAgrids, respectively. Fromtheseresults, it isclear that theexistingMI+ANN-based
forecastmodelpredicts the future loadwiththehighest%errorandthehighestvariance.Also, the
monthly forecast results of the three simulatedmodels for January–December 2015 are shown in
Tables 4 and6 forEKPCandDAYTOWN, respectively. FromTables 4 and6, it is evident that the
proposedMI+ANN+mEDEmodel forecasts the future loadwith the leastpredictionerrorand the
leastvarianceascomparedto theother twoexistingmodels. This result isobviousduetoabsenceof
optimizationmodule inMI+ANN-basedforecastmodel. Tominimize this forecasterror, thebi-level
forecastmodelusesEDEalgorithm. Subject to furtherminimizationof the forecast error,wehave
integratedanmEDEoptimizationtechnique. PleasenotethatmEDEisourmodifiedversionofexisting
EDEalgorithmfordownscaling forecast error. Results showthat integrationofmEDEalgorithm
yields fruitful results; theMI+ANN+mEDE-basedDALFmodel is relativelymoreaccurate thanthe
other twoexistingDALFmodels. Thesefiguresshowthepositive impactofoptimizationmoduleon
the forecasterrorminimizationbetweentargetcurveandthe forecast curve. It isobvious that theerror
curvedecreasesas thenumberofgenerationsof themEDEalgorithmare increased.As theproposed
MI+ANN+mEDEforecastmodelcomparestheforecastcurve’serror(nextgeneration)withtheexisting
one(existinggeneration)andupdates theweights if the forecast curve’serror is less thantheexisting
one (survival of thefittest). Thus, as expected, the forecast error is significantlyminimizedas the
56
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik