Seite - 61 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 61 -
Text der Seite - 61 -
Energies2019,12, 164
Table6.DAYTOWN:Results for2015.
Month ForecastModel
MI+ANN Bi-Level MI+ANN+mEDE
MAPE Variance MAPE Variance MAPE Variance
January 3.86 1.92 3.27 1.36 1.25 1.03
February 3.85 1.71 2.30 1.47 1.20 0.99
March 3.80 1.75 2.20 1.44 1.22 1.05
April 3.71 1.79 2.24 1.38 1.27 1.06
May 3.79 1.87 2.28 1.40 1.22 1.02
June 3.72 1.85 2.13 1.30 1.24 1.07
July 3.76 1.76 2.22 1.36 1.28 0.99
August 3.87 1.76 2.18 1.43 1.26 1.08
September 3.70 2.70 2.29 1.38 1.23 1.02
October 3.77 1.88 2.17 1.36 1.21 1.09
November 3.83 1.83 2.27 1.50 1.27 1.00
December 3.80 1.81 2.25 1.33 1.21 1.01
Average 3.78 1.88 2.31 1.39 1.23 1.03
Table7.Comparisonof training iterations (convergence)andregressionanalysis (accuracy).
Dataset ForecastModel Iterations Training Testing Validation
MI+ANN 20 0.9626 0.9619 0.9556
DAYTOWN Bi-Level 94 0.9787 0.9799 0.9776
MI+ANN+mEDE 95 0.9876 0.9890 0.9872
MI+ANN 23 0.9622 0.9617 0.9551
EKPC Bi-Level 95 0.9769 0.9783 0.9766
MI+ANN+mEDE 96 0.9877 0.9892 0.9878
5.ConclusionsandFutureWork
In SGs, DALF is an essential task because its accuracy has a direct impact on the planning
schedulesofutilities that stronglyaffects theenergy trademarket.Moreover,highvolatility in the
history loadcurvesmakesDALFinSGsrelativelymorechallengingwhencomparedto loadforecast
for longerduration. TakingintoaccountDALFinfluencingfactorssuchasexogenousvariablesand
meteorologicalvariables,wehavepresentedahybridANN-basedDALFmodel forSGswhich isa
multi-model forecastingANNwithasupervisedarchitectureandMARAfor training. Theproposed
model significantly reduced the execution time and enhanced the forecast accuracy bydistinctly
carrying localnormalizationandlocal training.Moreover, sigmoidactivation functionandMARA
enable the forecast strategytocapturenon-linearities in load-timeseries. Integrationofoptimization
module (basedonourproposedmodifications)with the forecast strategyalso improvedthe forecast
accuracy. TestsareconductedonthreeUSAgrids:DAYTOWN,EKPCandFE.Results showthat the
proposedmodel achieves relativelybetter forecast accuracy (98.76%) in comparison toanexisting
bi-leveltechniqueandanMI+ANNtechnique.Moreover, improvementinforecastaccuracyisachieved
whilenotpaying the cost of slowconvergence rate. Thus, the trade-off betweenconvergence rate
andforecast isnotcreated. Finally, fromapplicationperspective, theproposedmodelcanbeusedby
utilities to launchbetteroffers intheelectricitymarket. Thismeansthat theutilitiescansavesignificant
amountofmoneyduetobetteradjustmentof theirgenerationanddemandschedulessimplybecause
ofhighaccuracyof theproposedmodel.
In future,weare interested inadvancedsignalprocessingtechniques for featureselectionand
extractionpurposes.Moreover,explorationofparticleswarmoptimization-basedtechniquesanda
complete forecastplusscheduling-basedtechnique isalsounderconsideration.
61
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik