Seite - 63 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 63 -
Text der Seite - 63 -
Energies2019,12, 164
3. National Institute of Standards and Technology. NIST Framework and Roadmap for Smart Grid
InteroperabilityStandards.Release1.0. 2010.Availableonline: http://www.nist.gov/publicaffairs/releases/
upload/smartgridinteroperabilityïŹnal.pdf (accessedon10November2018 ).
4. Leiva, J.;Palacios,A.;Aguado, J.A.Smartmetering trends, implicationsandnecessities:Apolicyreview.
Renew. Sustain. EnergyRev. 2016,55, 227â233. [CrossRef]
5. HowDoesForecastingEnhanceSmartGridBeneïŹts?SASInstitute Inc.:Cary,NC,USA,2015;pp. 1â9.
6. Hernandez,L.;Baladron,C.;Aguiar, J.M.;Carro,B.;Sanchez-Esguevillas,A.J.;Lloret, J.;Massana, J.Asurvey
on electric power demand forecasting: Future trends in smart grids, microgrids and smart buildings.
IEEECommun. Surv. Tutor. 2014,16, 1460â1495. [CrossRef]
7. Vardakas, J.S.; Zorba, N.; Verikoukis, C.V. A Survey onDemandResponse Programs in Smart Grids:
PricingMethodsandOptimizationAlgorithms. IEEECommun. Surv. Tutor. 2015,17, 152â178. [CrossRef]
8. Hippert,H.S.;Pedreira,C.E.;Souza,C.R.NeuralNetworks forShort-TermLoadForecasting:Areviewand
Evaluation. IEEETrans. PowerSyst. 2001,16, 44â51. [CrossRef]
9. Raza,M.Q.;Khosravi,A.AreviewonartiïŹcial intelligencebasedloaddemandforecastingtechniques for
smartgridandbuildings.Renew. Sustain. EnergyRev. 2015,50, 1352â1372. [CrossRef]
10. Hagan,M.T.;Behr,S.M.TheTimeSeriesApproachtoShortTermLoadForecasting. IEEETrans. PowerSyst.
1987,2, 785â791. [CrossRef]
11. Niu,D.;Wang,Y.;Wu,D.Power loadforecastingusingsupportvectormachineandantcolonyoptimization.
Exp. Syst.Appl. 2010,37, 2531â2539. [CrossRef]
12. Li,H.;Guo, S.; Zhao,H.; Su,C.;Wang,B.AnnualElectricLoadForecastingbyaLeast SquaresSupport
VectorMachinewithaFruitFlyOptimizationAlgorithm.Energies2012,5, 4430â4445. [CrossRef]
13. Aung,Z.;Toukhy,M.;Williams, J.R.; Sâanchez,A.;Herrero,S.TowardsAccurateElectricityLoadForecasting
inSmartGrids. InProceedingsoftheFourthInternationalConferenceonAdvancesinDatabases,Knowledge,
andDataApplications,Athens,Greece,2â6 June2012;pp. 51â57.
14. Meidani, H.; Ghanem, R. Multiscale Markov models with random transitions for energy demand
management.EnergyBuild. 2013,61, 267â274. [CrossRef]
15. Nijhuis,M.;Gibescu,M.;Cobben, J.F.Bottom-upMarkovChainMonteCarloapproachforscenariobased
residential loadmodellingwithpubliclyavailabledata.EnergyBuild. 2016,112, 121â129. [CrossRef]
16. Guo, Z.; Wang, Z.J.; Kashani, A. Home appliance loadmodeling from aggregated smart meter data.
IEEETrans. PowerSyst. 2015,30, 254â262. [CrossRef]
17. Gruber, J.K.; Prodanovic,M.Residential energy loadproïŹle generationusing a probabilistic approach.
In Proceedings of the IEEEUKSim-AMSS 6th EuropeanModelling Symposium, Valetta, Malta, 14â16
November2012;pp. 317â322.
18. Kou,P.;Gao,F.Asparseheteroscedasticmodel for theprobabilistic load forecasting inenergy-intensive
enterprises.Electr. PowerEnergySyst. 2014,55, 144â154. [CrossRef]
19. Fan,S.;Hyndman,R.J.Short-TermLoadForecastingBasedonaSemi-ParametricAdditiveModel. IEEETrans.
PowerSyst. 2012,27, 134â141. [CrossRef]
20. Goude, Y.; Nedellec, R.; Kong, N. Local Short and Middle Term Electricity Load Forecasting with
Semi-ParametricAdditiveModels. IEEETrans. PowerSyst. 2014,5, 440â446. [CrossRef]
21. Doveh,E.;Feigin,P.;Greig,D.;Hyams,L.ExperiencewithFNNModels forMediumTermPowerDemand
Predictions. IEEETrans. PowerSyst. 1999,14, 538â546. [CrossRef]
22. Mahmoud,T.S.;Habibi,D.;Hassan,M.Y.;Bass,O.Modellingself-optimisedshort termloadforecastingfor
mediumvoltage loadsusing tunningfuzzysystemsandArtiïŹcialNeuralNetworks.EnergyConvers.Manag.
2015,106, 1396â1408. [CrossRef]
23. Wang,Z.Y.DevelopmentCase-basedReasoningSystemforShorttermLoadForecasting. InProceedings
of the IEEERussiaPowerEngineeringSocietyGeneralMeeting,Montreal,QC,Canada,18â22 June2006;
pp.1â6.
24. Che, J.;Wang, J.;Wang,G.Anadaptive fuzzycombinationmodelbasedonself-organizingmapandsupport
vector regressionforelectric loadforecasting.Energy2012,37, 657â664. [CrossRef]
63
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik