Seite - 65 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 65 -
Text der Seite - 65 -
energies
Article
DeepLearningBasedonMulti-Decompositionfor
Short-TermLoadForecasting
SeonHyeogKim ,GyulLee ,Gu-YoungKwon ,Do-InKimandYong-JuneShin*
DepartmentofElectricalandElectronicEngineering,YonseiUniversity,Seoul03722,Korea;
goodguy7@yonsei.ac.kr (S.H.K.); thyecho@yonsei.ac.kr (G.L.);kgy926@yonsei.ac.kr (G.-Y.K.);
penpony109@yonsei.ac.kr (D.-I.K.)
* Correspondence: yongjune@yonsei.ac.kr;Tel.: +82-2-2123-4625
Received: 31October2018;Accepted: 3December2018;Published: 7December2018
Abstract:Loadforecasting isakey issueforefficient real-timeenergymanagement insmartgrids.
Tocontrol the loadusingdemandsidemanagementaccurately, loadforecastingshouldbepredicted
in theshort term.Withtheadventofadvancedmeasuring infrastructure, it ispossible tomeasure
energyconsumptionatsamplingratesuptoevery5minandanalyze the loadprofileofsmall-scale
energygroups, suchas individualbuildings. Thispaperpresentsapplicationsofdeep learningusing
featuredecompositionfor improvingtheaccuracyof loadforecasting. Theloadprofile isdecomposed
intoaweekly loadprofileandthendecomposedinto intrinsicmodefunctionsbyvariationalmode
decomposition to capture periodic features. Then, a long short-termmemorynetworkmodel is
trainedbythree-dimensional inputdatawith three-stepregularization. Finally, thepredictionresults
of all intrinsicmode functions are combinedwith advancedmeasuring infrastructuremeasured
in the previous steps to determine an aggregated output for load forecasting. The results are
validated by applications to real-world data from smart buildings, and the performance of the
proposed approach is assessed by comparing the predicted results with those of conventional
methods,nonlinearautoregressivenetworkswithexogenous inputs,andlongshort-termmemory
network-basedfeaturedecomposition.
Keywords:deeplearning;empiricalmodedecomposition(EMD); longshort-termmemory(LSTM);
loadforecasting;neuralnetworks;variationalmodedecomposition(VMD);weeklydecomposition
1. Introduction
Accurate loadforecastingoptimizespower loads, reducingcostsandstabilizingelectricpower
distribution. Load forecasting accuracy depends on the time series data of non-stationary and
non-linearity characteristics. These characteristics are influencedby theprediction time scale and
energyconsumptionscale.Dependingonthepredictiontimescale, loadforecasting isclassifiedinto
four types.
Long-term load forecasting (LTLF) has a time scale ofmore than a year, medium-term load
forecasting(MTLF)a timescale fromoneweektooneyear,andshort-termloadforecasting(STLF)a
timescale fromonehour tooneweek. Systemoperators typicallyestimatedemandbyreferring to
loadprofiles fromseveralhoursago.Ultra-short-termloadforecasting(USTLF) isakeyissueforsmart
grids, real-timedemandsidemanagement (DSM),andenergytransactionsbecauseenergytrading in
DSMrequiresprecise loadforecasting in theorderofminutes,andprofit is stronglyrelatedto forecast
accuracy. Therefore, theUSTLFtimescale is fromseveralminutes toonehour [1].
Conventional loadforecastingmethodsusestatisticalmodelsbasedoninherentcharacteristics
ofhistoricaldata. PreviousSTLFstudieshaveproposedauto-regressive integratedmovingaverage
(ARIMA),Gaussianprocessingregression(GPR), supportvector regression(SVR),andneuralnetwork
Energies2018,11, 3433;doi:10.3390/en11123433 www.mdpi.com/journal/energies65
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik