Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Seite - 68 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 68 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Bild der Seite - 68 -

Bild der Seite - 68 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text der Seite - 68 -

Energies2018,11, 3433 VMDAlgorithm 1. Foreachmode,vk, compute theassociatedanalytic signalusingtheHilbert transformtoobtain theunilateral frequencyspectrum; 2. Foreachmode,vk, shift themodefrequencyspectrumtothebaseband(narrowfrequency)by mixing itwithanexponential tunedto thecorrespondingestimatedcenter frequency; 3. Estimate thebandwidthusingtheGaussiansmootheddemodulatedsignal. Theresultingconstrainedvariationalproblemisexpressedas: min vk,wk { K ∑ k ∥∥∥∥∂t[(δ(t)+ jπt ) ∗vk(t) ] e−jwkt ∥∥∥∥2 2 } (1) subject to K ∑ k vk=Wp(t). (2) whereWp(t) is the pweekly loadprofilewithmodevand frequencyw, δ is theDiracdistribution, k is themode index,K is the total number ofmodes and thedecomposition level, and ∗denotes convolution.Modevwithhighorderk represents lowfrequencycomponents. Incontrast to thatof EMD, thedecomposition levelofVMD,k,mustbepre-determined[22–25]. 2.4.Decomposition forFeatureSelection Figure1showstheproposedloadprofiledecompositionmethod.Thebuilding loadprofilehas similarweekdaypatterns,andthe loadismeasuredat5-min intervalsbyAMI.Toclassifyseasonal patterns, the typical loadprofile (xt) of the building is decomposedonaweekly basis forweekly seasonality features (xpt ). The typical loadprofile is decomposed into twodimensions. The load variationscanbeextracted if theyareperiodicbecause theVMDdecomposes the loadprofile in terms of the frequency(xpk,t). Thus,all the IMFsexhibitperiodiccharacteristics.AseachIMFhasaspecific frequency, theVMDidentifiesperiods that cannotbe identified in the typical loadprofile and the weekly loadprofile.Asaresult, the typical loadprofile isdecomposedinto three-dimensionaldata accordingto time,weeklyseasonality,andIMF-level. Thefeaturedecompositionprocessof the load profilecontributes to the loadcharacteristicswithoutexternaldata, suchas thecalendar information aboutholidays, temperature,andhumidity. Figure1.Loadprofile featuredecompositionprocess. 68
zurück zum  Buch Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Titel
Short-Term Load Forecasting by Artificial Intelligent Technologies
Autoren
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Herausgeber
MDPI
Ort
Basel
Datum
2019
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-03897-583-0
Abmessungen
17.0 x 24.4 cm
Seiten
448
Schlagwörter
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies