Seite - 68 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 68 -
Text der Seite - 68 -
Energies2018,11, 3433
VMDAlgorithm
1. Foreachmode,vk, compute theassociatedanalytic signalusingtheHilbert transformtoobtain
theunilateral frequencyspectrum;
2. Foreachmode,vk, shift themodefrequencyspectrumtothebaseband(narrowfrequency)by
mixing itwithanexponential tunedto thecorrespondingestimatedcenter frequency;
3. Estimate thebandwidthusingtheGaussiansmootheddemodulatedsignal.
Theresultingconstrainedvariationalproblemisexpressedas:
min
vk,wk {
K
∑
k ∥∥∥∥∂t[(δ(t)+ jπt )
∗vk(t) ]
e−jwkt ∥∥∥∥2
2 }
(1)
subject to
K
∑
k vk=Wp(t). (2)
whereWp(t) is the pweekly loadprofilewithmodevand frequencyw, δ is theDiracdistribution,
k is themode index,K is the total number ofmodes and thedecomposition level, and ∗denotes
convolution.Modevwithhighorderk represents lowfrequencycomponents. Incontrast to thatof
EMD, thedecomposition levelofVMD,k,mustbepre-determined[22–25].
2.4.Decomposition forFeatureSelection
Figure1showstheproposedloadprofiledecompositionmethod.Thebuilding loadprofilehas
similarweekdaypatterns,andthe loadismeasuredat5-min intervalsbyAMI.Toclassifyseasonal
patterns, the typical loadprofile (xt) of the building is decomposedonaweekly basis forweekly
seasonality features (xpt ). The typical loadprofile is decomposed into twodimensions. The load
variationscanbeextracted if theyareperiodicbecause theVMDdecomposes the loadprofile in terms
of the frequency(xpk,t). Thus,all the IMFsexhibitperiodiccharacteristics.AseachIMFhasaspecific
frequency, theVMDidentifiesperiods that cannotbe identified in the typical loadprofile and the
weekly loadprofile.Asaresult, the typical loadprofile isdecomposedinto three-dimensionaldata
accordingto time,weeklyseasonality,andIMF-level. Thefeaturedecompositionprocessof the load
profilecontributes to the loadcharacteristicswithoutexternaldata, suchas thecalendar information
aboutholidays, temperature,andhumidity.
Figure1.Loadprofile featuredecompositionprocess.
68
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik