Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Seite - 71 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 71 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Bild der Seite - 71 -

Bild der Seite - 71 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text der Seite - 71 -

Energies2018,11, 3433 4. Experiments Thissectiondescribes theprocessusedtoobtain timeseriesmodels for loadforecasting. Figure3 shows the proposed load forecasting model using LSTM with multi-decomposition for feature extraction.Wewilldiscusseachstep indetail. Figure3.Deep-learning loadforecastingbasedonthemulti-decompositionmethod. 4.1. Predictionof theTimeScale Reference loadprofiles reflect the loadprofiles thatareclose toreal-time loadprofilesbeforeh stepsago,wherehdetermines thepredictiontimescales,whichdependonthepurposeof the load forecasting. STLF techniques canbeused foravarietyofpurposesbyenabling smaller scales and fasterprediction.USTLF,whichpredicts the loadwithinafewminutes toonehour, canbeusedfor electricity theftdetectionorcanprovide informationforemergencypowersupply[47]. STLF,which predicts the loadfromonehour toaday, canbeusedforelectricity transactionsoreconomicdispatch of renewableenergyresources [2]. 4.2. ExtractFeatureLayer Through the multi-decomposition method, the features of time-series data are extracted. Thenumberofdecomposition levels (K) is10,which is thevalueobtainedwhenthedecomposition loss rate is0.1%or less. Theweightof theweekly loadprofile (Dp) considers the trendof loadpatterns accordingtoseasonalchanges. EachIMFdecomposedthroughtheVMDhasafrequencycharacteristic andisnormalizedtomakethe featurestandout (Nk). 71
zurück zum  Buch Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Titel
Short-Term Load Forecasting by Artificial Intelligent Technologies
Autoren
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Herausgeber
MDPI
Ort
Basel
Datum
2019
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-03897-583-0
Abmessungen
17.0 x 24.4 cm
Seiten
448
Schlagwörter
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies